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Maintaining engineered cell populations’ genetic stability is a key challenge
in synthetic biology. Synthetic genetic constructs compete with a host cell’s
native genes for expression resources, burdening the cell and impairing
its growth. This creates a selective pressure favouring mutations which
alleviate this growth defect by removing synthetic gene expression.
Non-functional mutants thus spread in cell populations, eventually making
them lose engineered functions. Past work has attempted to limit mutation
spread by coupling synthetic gene expression to survival. However, these
approaches are highly context-dependent and must be tailor-made for each
particular synthetic gene circuit to be retained. By contrast, we develop
and analyse a biomolecular controller which depresses mutant cell growth
independently of the mutated synthetic gene’s identity. Modelling shows
how our design can be deployed alongside various synthetic circuits
without any re-engineering of its genetic components, outperforming
extant gene-specific mutation spread mitigation strategies. Our controller’s
performance is evaluated using a novel simulation approach which
leverages resource-aware cell modelling to directly link a circuit’s design
parameters to its population-level behaviour. Our design’s adaptability
promises to mitigate mutation spread in an expanded range of applications,
while our analyses provide a blueprint for using resource-aware cell
models in circuit design.

1. Introduction
Synthetic biology, which entails engineering living systems with useful
functionalities by introducing new synthetic genes to cells, promises to
tackle global challenges in medicine, industry and sustainability. However,
synthetic biology is currently held back by several inherent challenges, such
as non-modularity and evolvability of living systems, which make robust,
predictable and durable performances difficult to achieve [1,2].

A major factor contributing to these issues is the finiteness of the pool of
cellular resources (most importantly for bacteria, ribosomes) shared between
synthetic genes introduced by engineers and the host cell’s own native genes.
On the one hand, this complicates the design of so-called ‘circuits’ of synthetic
genes regulating each other to sense, process and react to stimuli. Indeed,
unlike electrical components, all gene circuit elements interact indirectly
via the shared resource pool, which violates the engineering principle of
modularity and complicates the prediction of a circuit’s performance based
on the behaviours of its individual components observed in isolation [2,3].
Moreover, high synthetic gene expression may significantly deplete cellular
resource pools, interfering with native gene expression and thus the cell’s
growth and functioning. This burdens the host, which may have multiple
downstream effects. The changed cellular context (e.g. cell-wide variations
arising from growth rate changes) can impact circuits’ dynamics, making
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it even harder to predict their performance and design them accordingly [4,5]. Furthermore, in an engineered cell population,
mutants with defunct circuitry may experience less burden and divide faster. This leads to ‘mutation spread’—growth of
non-functional subpopulations that eventually outcompete and displace original cells. This evolutionary pressure to lose
engineered functionalities significantly impairs biotechnologies’ productivity and durability [1].

To address resource finiteness challenges, synthetic biologists have developed mathematical gene expression models that
incorporate resource competition dynamics [2], as well as the host cell’s growth regulation mechanisms and their interplay
with synthetic gene expression [4]. This has enabled more reliable predictions of the genetic circuit performance despite
the non-modularity and context-dependence of biological systems. Furthermore, insights provided by resource-aware model
simulations and analytical derivations have facilitated the development of circuits rendering synthetic biology designs more
modular and robust to resource competition [5].

To tackle resource competition’s population-level implications, several countermeasures to mutation spread have been
proposed. Genes’ mutation probability can be lowered—although not eliminated—by optimizing synthetic genes’ DNA
sequences and modifying the host’s genome [6]. Alternatively, synthetic gene expression burden can be reduced to make the
engineered cell’s growth defect less of a competitive disadvantage. This can be done either permanently by giving circuit genes
weaker promoters and ribosome-binding sequences (though at the cost of often-desired high expression levels), or only when
synthetic protein synthesis excessively stresses the cell if stress-response promoters are used as negative feedback regulators
[3]. In another strategy, engineered cells remain in a non-producing state (experiencing little burden), but a fraction of them
in every generation is differentiated into a state with high synthetic gene expression [7]. Finally, to make a cell’s survival
dependent on the presence of synthetic circuitry, a gene essential to cell growth is co-expressed with the synthetic genes of
interest—potentially with these genes’ DNA sequences overlapping for even stronger coupling between their functioning. Loss
of useful synthetic genes’ expression to mutation is thus accompanied by essential gene loss, making mutants unable to grow
and outcompete engineered cells [6].

However, extant strategies for mitigating mutation spread often have restricted applications and are cumbersome to adapt
for new scenarios. Many of the aforementioned methods limit the maximum achievable productivity of biotechnologies, either
because they keep synthetic gene expression low by design (to reduce the burden and selective pressure against engineered
cells) or due to confining the expression of genes of interest to just the subset of differentiated cells within the population. Such
bounded synthetic capacity may be undesirable in applications like biomanufacturing, which require high product yields [3,6].
Furthermore, most methods require tailoring for each application. The sequence-specificity of codon optimization and essential
gene overlapping mean that a given circuit’s DNA implementation must be redesigned with these strategies in mind. Likewise,
the addition of a differentiation switch and co-expressed essential genes requires case-specific additional circuitry. Having to
design and synthesize new DNA sequences for every new circuit of interest is time- and cost-intensive [8], which has limited the
application of mutation spread mitigation methods in synthetic biology.

We propose ‘the Punisher’, a novel circuit for countering mutation spread. Our versatile design deprives mutant cells of a
growth advantage, yet can be easily adapted for different applications without re-engineering its DNA sequences. This work
extends the applications of resource-aware gene expression modelling techniques [5], previously used for mitigating the effects
of resource competition on a single-cell level, to countering undesired population-wide burden phenomena. A coarse-grained
cell model provides a holistic view of resource competition between synthetic and native genes, capturing its effects on cell
growth. Based on this single-cell modelling, we define a novel engineered cell population model that directly links the circuit’s
population-level performance to its parameters. Our analysis suggests scenarios in which the Punisher has advantages over the
extant method of countering mutation spread by co-expressing synthetic and essential genes. Moreover, our modelling can help
choose the Punisher’s design parameters, including those that can be adjusted without any genetic modifications, in order to
re-use our circuit in novel applications.

2. Circuit design and analysis
2.1. Circuit description
Mutation spread occurs because cells in which synthetic genes mutate to become non-functional or non-expressed are rewarded
by burden alleviation and the resultant growth advantage, which selects for such mutants and lets them eventually take over
the population [1,6]. To counter this, our circuit, shown in figure 1a, replaces reward with punishment by detecting
burden-alleviating mutations in its host E. coli cell and reducing cell growth in response. Responding directly to burden,
regardless of which particular synthetic genes contribute to it, allows the Punisher to be easily re-used across different applica-
tions.

The Punisher’s detection component comprises the self-activating ‘switch’ gene, which encodes a transcription factor protein
that, when bound by a chemical inducer molecule, promotes its own expression. Experiments show that such a protein’s
concentration can converge to either a low- or a high-expression equilibrium depending on the burden experienced by the host
cell [9,10]. When all synthetic genes in the cell are functional, competition for gene expression resources is high, so the switch
protein’s concentration ps cannot reach a high-expression equilibrium. Upon synthetic gene expression loss, more resources
become available for protein synthesis, so ps converges to the high-expression equilibrium, increasing several-fold. Since the
timescale of a biomolecular species’ dynamics is primarily determined by the rate of its removal from the system [11], we speed
up the Punisher’s response by having the switch protein be both diluted by cell division and degraded by a synthetic protease
[12,13].
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The punishment component is powered by an integrase protein co-expressed from the same operon with the switch gene.
Once the integrase reaches a sufficiently high concentration, it excises the DNA sequence situated between its cognate sites,
which flank a gene essential for cell growth. Hence, upon a mutation-induced rise in the switch’s and the integrase’s expression,
the essential gene is excised from its plasmid or the cell’s genome [7,14], impairing host cell growth. Importantly, the integrase’s
action is irreversible, so a ‘punished’ mutant cell remains slow-growing even if essential gene loss reduces resource availability,
bringing the switch protein’s abundance back to its pre-detection level.

Our circuit’s operating principle is illustrated in figure 1b with the example of the cell hosting the Punisher alongside a single
burdensome synthetic gene. Here, the essential gene excised by the integrase is chloramphenicol acetyltransferase (CAT), an
enzyme which degrades the ribosome-inactivating antibiotic chloramphenicol [15]. If chloramphenicol is present in the culture
medium, CAT gene loss thereby compromises translation, impairing cell growth. Initially, only a few integrase molecules are
present in the cell, so CAT’s concentration is high and steady. Upon the burdensome gene’s mutation, the cell growth rate’s
rise is followed by a sharp increase in the integrase’s abundance. Consequently, the CAT gene is excised and the cell growth
rate slows down dramatically. Due to the excision’s irreversibility, the subsequent fall in the integrase’s concentration due to
decreased ribosome availability does not recover the cell’s growth rate.

2.2. Modelling the circuit in the host cell context
Since the Punisher reacts to changes in gene expression resource availability and curbs the host cell’s growth rate in response,
informative modelling of the circuit must incorporate resource competition dynamics between native and synthetic genes, as
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Figure 1. Basics of the Punisher's functioning. (a) The Punisher comprises a self-activating switch gene co-expressed with an integrase gene. The switch protein
is degraded by a synthetic protease and, when bound by a chemical inducer molecule, acts as a transcription factor. All three proteins' expression depends on the
availability of gene expression resources (ribosomes) in the cell. (b) The Punisher's response to synthetic gene expression loss (arrow boldness reflects the strength of
interactions). When mutation of a burdensome synthetic gene frees up resources, increasing the mutant cell's growth rate, more integrase is produced by the Punisher.
Consequently, the integrase excises the antibiotic resistance gene chloramphenicol acetyltransferase (CAT), so unhindered ribosome inactivation by the antibiotic
chloramphenicol decreases the expression resources' availability and thus the mutant cell's growth rate. (c,d) Simulation of the Punisher's response to mutation of a
single constitutive burdensome gene expressed in the same host cell.
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well as capture the mechanisms determining the host cell’s growth rate and physiological state [16,17]. We therefore employ
a coarse-grained resource-aware cell model [5] which, besides synthetic circuitry, explicitly considers the expression of a cell’s
native genes and their interactions and regulation. Including both synthetic and native genes’ contributions to resource demand,
our model predicts the cell’s growth rate and resource allocation in a wide range of industrially relevant conditions, including
when it is exposed to the ribosome-inhibiting antibiotic chloramphenicol, which significantly influences resource competition
[4,16]. Simultaneously, coarse-graining the cell’s native genes by their function into just several classes keeps the model simple,
allowing the derivation of analytical relations describing the Punisher’s behaviour in §2.3.

Our ordinary differential equation (ODE) system is thus based on the resource-aware cell model from [5], modified to
capture effects of the synthetic protease and intracellular chloramphenicol as per electronic supplementary material, Note S1.3.
Equations (2.1)–(2.6) describe host cell dynamics, whereas the behaviour of the synthetic gene set X  is given by equations (2.7)
and (2.8).

(2.1)ṁa = caαaλ(ϵ, B) − (βa + λ(ϵ, B))ma,
(2.2)ṁr = Fr(tu, tc) ⋅ crαrλ(ϵ, B) − (βr + λ(ϵ, B))mr,
(2.3)ṗa = ϵ(tc)na ⋅ ma/kaD R − λ(ϵ, B) ⋅ pa,
(2.4)Ṙ = ϵ(tc)nr ⋅ mr/krD R − λ(ϵ, B) ⋅ R,

(2.5)tċ = ν(tu,σ) ⋅ pa − ϵ(tc) ⋅ B − λ(ϵ, B) ⋅ tc,
(2.6)tu̇ = ψ(tu, tc) ⋅ λ(ϵ, B) − ν(tu,σ) ⋅ pa + ϵ(tc) ⋅ B − λ(ϵ, B) ⋅ tu,
(2.7)ṁxl = Fxl( ⋅ )cxlαxlλ(ϵ, B) − (βxl + λ(ϵ, B))mxl             for all xl ∈ X ,

(2.8)ṗxl = ϵ(tc)nxl ⋅ mxl/kxlD R − (δxlpprot + λ(ϵ, B))pxl           for all xl ∈ X .

Gene expression resource allocation and growth regulation in E. coli are primarily determined by tRNA charging in the cell
[16,18]. Therefore, our model includes concentrations of aminoacyl-tRNAs tc and uncharged tRNAs tu and considers two classes
of the cell’s native genes with opposite effects on tRNA levels. Metabolic genes (a) aminoacylate tRNAs using nutrients from the
culture medium, whose quality is captured by the factor σ. Meanwhile, ribosomal genes (r) are responsible for protein synthesis,
which consumes charged tRNAs. The a and r gene classes are each treated as a single lumped gene, whose mRNA concentra-
tions are ma and mr, respectively, and whose protein concentrations are respectively pa and R. Out of R nM of ribosomes in the
cell, B nM are translating. Both for native and synthetic genes, cj is the gene j’s DNA concentration in the cell, αj is its promoter
strength, nj is its length in amino acids, βj is the mRNA degradation rate and kj is the mRNA-ribosome dissociation constant,
reflective of a gene’s ribosome-binding sequence (RBS) strength. Synthetic gene ODEs also include the (possibly zero) rate δxl
at which the Punisher’s protease (present in concentration pprot) degrades them, as well as the transcription regulation function
0 ≤ Fxl( ⋅ ) ≤ 1 whose form and arguments are gene-specific. The functions λ(ϵ, B), ϵ(tc), Fr(tu, tc), ψ(tu, tc) and ν(tu,σ) are given in
electronic supplementary material, table S2, and represent the cell growth rate, the translation elongation rate, the ribosomal
genes’ transcription regulation function and tRNA synthesis and aminoacylation rates, respectively.

The ‘ribosomal competition denominator’ D capturing the cell’s translational resource availability is defined in equations
(2.9) and (2.10) which, besides the already-explained variables, include the mass fraction of housekeeping (i.e. not metabolic
or ribosomal) native proteins in the cell ϕ q, assumed constant [5,15], and the intracellular concentration ℎ of chloramphenicol,
which binds and inactivates ribosomes with a dissociation constant KD.

(2.9)D = KD + ℎKD ⋅ 1 +
∑j ∈ {a, r} ∪ Xmj/kj − KD + ℎKD ⋅ ϕqΔϵR

1 − ϕq 1 − KD + ℎKD ⋅ ΔϵR ,

(2.10)where Δ = pprot ∑xl ∈ Xnxlδxlpxl .
The synthetic gene set X  includes synthetic circuitry whose mutation the Punisher aims to penalize—the ODEs characterizing
different set-ups considered in this study are provided in electronic supplementary material, Note S1.5. Moreover, X  includes
the Punisher’s switch, integrase, protease and CAT genes (X ⊇ {s,  i,  prot,  cat}) described by equations (2.11)–(2.19), where I is
the share of switch proteins bound by chemical inducer molecules, ηs and Ks are the cooperativity and the dissociation constant
for the switch protein’s binding to the switch gene’s DNA, and Fsb is the switch gene promoter’s baseline activity without
transcriptional activation.

(2.11)ṁs = Fs(ps, I) ⋅ csαsλ(ϵ, B) − (βs + λ(ϵ, B))ms,
(2.12)ṗs = ϵ(tc)ns ⋅ ms/ksD R − (δspprot + λ(ϵ, B))ps,
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(2.13)mi ≡ ms ⋅ nins  due to co-expression (see ESM, Note S1.2),

(2.14)ṗi = ϵ(tc)ni ⋅ mi/kiD R − (δipprot + λ(ϵ, B))pi,
(2.15)ṁprot = cprotαprotλ(ϵ, B) − (βprot + λ(ϵ, B))mprot,
(2.16)ṗprot = ϵ(tc)nprot ⋅ mprot/kprotD R − (δprotpprot + λ(ϵ, B)) ⋅ pprot,
(2.17)ṁcat = ccatαcatλ(ϵ, B) − (βcat + λ(ϵ, B))mcat,
(2.18)ṗcat = ϵ(tc)ncat ⋅ mcat/kcatD R − (δcatpprot + λ(ϵ, B))pcat,
(2.19)Fs(ps, I) = Fsb + (1 − Fsb) ⋅ (Ips)ηs

(Ips)ηs + Ksηs .

While all other genes’ concentrations remain constant, CAT gene DNA can be excised by the integrase in a reversible strand
exchange reaction followed by an irreversible conformation change. We model this using equations (2.20) and (2.21) derived in
electronic supplementary material, Note S1.4, based on an experimentally parametrized serine integrase action model [14,19].
Here, ccat and cLRi are concentrations of the CAT gene DNA before and after strand exchange (the former being the functional
gene copy number), KbI is the integrase-DNA dissociation constant, ksx+  and ksx−  are the forward and backward strand exchange
rates and kconf is the conformation change rate.

(2.20)ċcat = − ksx+ pi4KbI4 + pi4ccat + ksx− cLRi,
(2.21)ċLRi = ksx+ pi4KbI4 + pi4ccat − ksx− cLRi − (kconf + λ)cLRi .

Capturing the rate at which CAT binds and degrades chloramphenicol by the affinity constant KC, we define equation (2.22)
for chloramphenicol’s intracellular concentration, where κ is the rate of chloramphenicol’s diffusion through the cell membrane
[15,20].

(2.22)ℎ̇ = κ(ℎext − ℎ) −
ℎpcatKC − λ(ϵ, B) ⋅ ℎ .

We use these ODEs to simulate the case of the cell hosting a single constitutive synthetic gene alongside the Punisher, described
in §2.1 and electronic supplementary material, Note S1.5.1. The obtained trajectory in figure 1c,d matches our expectations
for the Punisher’s performance. This behaviour is reproduced by stochastic cell model trajectories, simulated according to the
hybrid tau-leaping method described in [5] (electronic supplementary material, Note S2.1). The code for these and all other
simulations, available at [21], was implemented in Python 3.12 using the JAX 0.4.23 package to enable efficient parallelized
computation [22,23].

2.3. Switching threshold identification and tuning
As described in §2.1, the Punisher detects synthetic gene mutations if they reduce the burden experienced by the host cell
below the threshold value at which the switch gene transitions from a low-expression to a high-expression equilibrium. Thus,
predicting whether the Punisher will function correctly requires understanding what determines its switching threshold and
how to adjust it. Moreover, although multiple different synthetic circuits may burden the cell to a similar extent (allowing to use
the same implementation of the Punisher with either of them), synthetic gene expression burden may vary depending on the
circuit’s architecture and the cell culture conditions. Therefore, deploying the Punisher in new scenarios, where synthetic gene
mutations alleviate burden to a different extent, also requires guidance on adjusting the Punisher’s switching threshold. Such
design insights are enabled by our coarse-grained cell model’s simplicity and amenability to analytical derivations.

Electronic supplementary material, Note S3, shows that, with several realistic simplifying assumptions, our coarse-grained
resource-aware cell model allows to quantify the steady-state burden of expressing a native or synthetic gene j as

(2.23)ξj = Fjαjcjkj ,

where F j is the steady-state value of its transcription regulation function. The total gene expression burden sensed by the
Punisher is the sum of these values over all genes except for the Punisher’s switch and integrase genes themselves,

(2.24)Ξ = ∑j ∈ {a, r} ∪ X ∖ {s, i}ξj .
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Solving the model at steady state retrieves the value of Fs required to achieve a given steady-state switch protein concentrationps for a given burden. This Fsreq value is defined in equations (2.25) and (2.26) with ϵ  and ℎ  standing for the steady-state
translation elongation rate and intracellular chloramphenicol concentration, M being the host cell’s total protein mass, and ξsmax
and ξimax representing the maximum (i.e. calculated for Fs = Fi = 1) burden of expressing the switch and the integrase proteins.

(2.25)Fsreq(ps, Ξ) = ps(1 + χ) ⋅ Ξξsmax + ξimax ⋅ M(1 − ϕq)ns ⋅ ξsmaxξsmax + ξimax − ps(1 + χ)
−1

,

(2.26)where χ = KD + ℎℎ ⋅ δsMnrξprotϵnprotξr .

However, the switch gene’s transcription regulation function’s actual value is given by a Hill function in equation (2.19). The
switch protein concentration is therefore in steady state if and only if

(2.27)Fsreq(ps, Ξ) = Fsreal(ps)   ⇔    Fsreq(ps, Ξ) = Fsb + (1 − Fsb) ⋅ (Ips)ηs
(Ips)ηs + Ksηs ,

i.e. the real transcription regulation function’s value is equal to the value required to achieve equilibrium. Graphically, this
can be understood as the blue and the black curves intersecting in figure 2a. The plot also reveals the fixed points’ stability:
the switch protein’s concentration decreases when the actual transcription rate is below that required to keep ps steady, and
increases otherwise.

Equation (2.25) indicates that Ξ defines the black line’s gradient in figure 2a. Hence, for large gene expression burden this
line rises steeply and crosses F sreal at low ps, producing a stable equilibrium (figure 2a, top). As Ξ is reduced, the curve’s slope
becomes gentler, until it touches F sreal from below, producing a bifurcation with a saddle node at low ps and a stable fixed
point to its right (figure 2a, middle) [10]. If burden further decreases below this threshold, a single high-expression equilibrium
remains (figure 2a, bottom). Crucially, since the switch gene and the integrase are co-regulated, the low-expression equilibrium
stands for low integrase abundance and CAT gene excision rate (pi ≪ KbI), whereas the high-expression fixed point corresponds
to high integrase concentration and thus high essential gene excision rate.

Therefore, the Punisher penalizes synthetic gene mutation when it brings the burden Ξ below the bifurcation threshold
Ξ. Retrieving this threshold value from the Punisher’s design parameters (see electronic supplementary material, Note S3.4)
and comparing it with burden before and after synthetic gene mutation allows to predict whether the Punisher will become
activated in a mutant cell. Moreover, a lower bound on the change in integrase activity upon the Punisher’s triggering can be
found according to electronic supplementary material, Note S3.5, revealing how the Punisher’s design parameters define its
performance. For instance, figure 2b shows its dependence on the switch and integrase genes’ copy number and the inducer’s
concentration in the culture medium. Meanwhile, figure 2c depicts the effects of the cooperativity coefficient ηs and the baseline
promoter activity Fsb, which are key determinants of a self-activating gene’s equilibria [24].

The dependence of Ξ on I is particularly significant. While all other parameters are determined by the synthetic DNA
sequence during construct design, the inducer’s concentration can be easily tuned by adjusting the chemical inducer’s concen-
tration in the culture medium. Graphically, it stands for moving along the white line in figure 2b to position Ξ between the pre-
and post-mutation burden levels. In plots for other parameters, such as figure 2c, changing the chemical induction is equivalent
to moving the acceptable parameter region to cover a given parameter combination. Therefore, without any re-engineering of
its genetic components, the same DNA implementation of the Punisher can be re-used in different conditions and with sundry
synthetic gene circuits of varying burdensomeness simply by adding different inducer amounts to the medium.

3. Example application
3.1. Performance simulation
We now simulate the Punisher’s deployment alongside more complex synthetic gene circuitry than that shown in figure 1.
Namely, we consider two synthetic toggle switches (figure 3a), described with ODEs in electronic supplementary material, Note
S1.5.2. A toggle switch comprises two genes that repress each other’s expression; this repression’s strength can be modulated
by adding chemical inducers to the medium. Therefore, for certain combinations of design parameters and environmental
conditions, a toggle circuit can exhibit bistability, since either of the toggle’s two genes can be highly expressed whilst repressing
the other gene’s expression. Pulses of inducer concentration can ‘flip’ the toggle from one equilibrium state to the other, where
it stays until the next flipping [25]. Several toggle switches may be required in the same cell if it needs to simultaneously
‘remember’ several different inducer pulses.

Importantly, loss of expression of a single synthetic gene in a network does not always alleviate burden [1]. Namely,
mutating one gene in a toggle switch means that the other gene is no longer repressed and is thus expressed even more
actively, increasing burden and slowing down cell growth (electronic supplementary material, Note S2.2). Therefore, single-
gene mutants have a growth disadvantage compared with original engineered cells, presenting no risk of outcompeting them
in the population. Losing both genes of a toggle switch, conversely, may significantly increase resource availability. In line
with our derivations in §2.3, the inducer level should thus be changed to set I = 0.87 and position the Punisher’s switching
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threshold between the burden of expressing both toggle switches and that of expressing one toggle. As revealed by figure 3b,c,
the Punisher then detects the loss of a toggle and reduces cell growth in response.

When a synthetic circuit is out of steady state, the burden caused by it can vary over time. For instance, when a toggle switch
is flipped, the overall expression of its genes may momentarily dip. Simultaneously flipping both toggles can temporarily
reduce burden almost as much as mutating one toggle switch. Nonetheless, the Punisher can reject (i.e. not respond to) such
transient disturbances (figure 3d,e). Provided that burden alleviation is sufficiently short-lived, the Punisher still may not leave
the low-expression equilibrium’s basin of attraction by the time the burden returns to its original high value; therefore, the
Punisher goes back to the off-state without triggering essential gene excision. As shown in electronic supplementary material,
Note S3.6, knowing the expected duration of disturbance to be filtered out, the Punisher’s switching timescale can be adjusted
accordingly via methods which require minimal or no DNA editing [26]. Besides rejecting perturbations associated with gene
circuits’ dynamic behaviour, this feature of the Punisher can also render it robust to cell cycle-associated fluctuations (electronic
supplementary material, Notes S2.6−2.7) [11,27,28].

3.2. Comparison with alternative mutation spread mitigation strategies
When cell populations need to retain relatively complex circuits, the burden-sensing nature of the Punisher’s response can make
it advantageous over extant mutation spread mitigation strategies. An instance of this is the task of penalizing the mutations of
two toggle switches, fulfilled using the Punisher in §3.1. Here, we compare our design’s performance in this case with that of
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Figure 2. Emergence, identification and tuning of the Punisher's switching threshold. (a) Required ( F sreq) and real (Fsreal) values of the switch gene's transcription
regulation function calculated from the switch protein's concentration ps for all synthetic genes being functional (top), at the threshold burden Ξ  (middle), and with
synthetic gene expression lost (bottom). Circles mark the system's fixed points—filled for stable, empty for unstable. Grey arrows mark the direction of convergence
of ps. (b) Heatmap of the minimum fold-change in the integrase's DNA-cutting activity as a function of the switch and integrase genes' DNA concentration cs = ci
and the share I  of switch proteins bound by the inducer. Dashed and solid black lines respectively represent parameter combinations for which the switching threshold
Ξ  is equal to burden with and without the expression of the single constitutive synthetic gene. The Punisher functions correctly for all parameter combinations in the
acceptable region between these lines. The black cross represents the parameter combination used in simulations for figure 1. If initially the Punisher's parameters
do not make it switch on upon synthetic gene expression loss (e.g. blue cross at I = 0.6), the inducer's concentration in the medium can be tuned to achieve
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used in figure 1 (black cross).
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the co-expression method discussed in §1 and [6], where the synthetic gene to be retained by the cell population is expressed
together with a gene essential for growth, so mutating the former also disables the latter.

We simulate this scenario as depicted in figure 4a and described with ODEs in electronic supplementary material, Note
S1.5.3. Here, the cell hosts two synthetic toggles whose genes (for symmetry, all four of them) are co-transcribed in the same
operon with the antibiotic resistance gene CAT. Despite being translated from the same mRNA, essential and toggle gene
expression rates may differ due to distinctions in post-transcriptional behaviour, which we capture by considering a wide range
of possible CAT gene RBS strengths [4,29,30]. Figure 4b demonstrates that for most synthetic gene mutation combinations the
Punisher slows down mutant cells’ growth comparably to the best possible co-expression set-up.

More significantly, in some parameter regimes CAT gene co-expression in fact promotes the growth of cells with undesirable
mutations, which would otherwise be unable to take over the cell population. This is because the co-expression method operates
not with the burden which slows down cell growth, but rather with mutations themselves, whose influence on growth rates
may be less straightforward [1,6]. For instance, mutating one gene in a toggle upregulates its counterpart, formerly repressed
by it (electronic supplementary material, Note S2.3). This can increase synthetic protein expression levels above its original
values, elevating the expression burden—which in this case is desirable as it selects against mutant cells. However, if this newly
de-repressed gene is co-expressed with an essential gene, the benefit to cell viability from increased essential protein levels
can counteract this useful additional burden, potentially even producing mutant cells that grow faster than their unmutated
progenitors. By contrast, the Punisher only reacts to synthetic gene expression loss when it does reduce burden and increase cell
growth rates, removing the possibility of responses that actively (and undesirably) promote mutation spread.

Engineering essential gene co-expressions can also be more cumbersome than deploying the Punisher. First, a circuit may
require multiple co-expressions (e.g. four of them in our case), implementing which in DNA is time- and cost-intensive [8]. To
apply the co-expression method to another circuit, this DNA engineering step would have to be repeated anew. Second, only
certain parameter regions (e.g. RBS strengths 0.66 < kcatyz+ < 1.63 nM−1 h−1 in our case) yield co-expression set-ups which do not
risk inadvertently promoting mutation spread. Meanwhile, parameter tuning for this method can be challenging. Adjusting RBS
strengths requires DNA editing, while the design space for ribosome-binding sequences may be restricted if the essential gene
is not merely co-expressed, but actually overlaps with a synthetic gene’s sequence for stronger protection against mutations [6].
CAT genes’ transcription, the most commonly tuned expression step in synthetic biology, is governed by the toggles’ promoters
and thus is not easily adjusted. Less trivial post-transcriptional regulation circuitry, which can be complicated to implement,
may therefore be necessary to enable a functional essential gene co-expression set-up.
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Conversely, the same DNA implementation of the Punisher can be re-used in different applications. Although our design,
too, is only effective within a certain parameter region (see figure 2), the switching threshold can be adjusted without costly
genetic interventions by changing the concentration of its inducer in the medium as shown in §2.

4. Population-scale simulations
4.1. Population model definition
Previous sections demonstrate that the Punisher can detect synthetic gene mutation-induced changes in the burden experienced
by a single cell, curbing its growth in response. However, the Punisher’s ultimate purpose is to slow down the outcompetition
of engineered cells by mutants in a population, so in silico evaluation of our design’s performance ultimately requires
population-level modelling. We therefore propose a model of a population of cells in a bioreactor, defined for the case of the
Punisher favouring the retention of a single synthetic burdensome gene as described in §2.

Given the very high number of cells in a typical bioreactor [1], agent-based approaches capturing each individual cell’s
behaviour with a separate model and explicitly considering all intercellular interactions [31] are computationally intractable.
Instead, population-scale models, frequently used in evolutionary and synthetic biology [7], can classify cells as members of
subpopulations according to their genetic state—i.e. which synthetic genes remain unmutated and functional (meanwhile,
electronic supplementary material, Note S4.2, shows that native gene mutations conferring cells with chloramphenicol
resistance are unlikely to significantly affect population dynamics [32]). Each cell type’s abundance is a variable modelled
with an ODE. The combination of this approach with resource-aware cell modelling was pioneered by Ingram and Stan [1].
However, their model assumed identical internal state dynamics (captured by an ODE cell model) for every cell in a given
genetic state. This is unsuitable for modelling genetic circuits like the Punisher, which takes time to become activated upon
synthetic gene mutation, hence the state of a recently mutated cell’s circuitry being different to that of a cell mutated long ago.

We thus further subdivide genetically identical cells according to the Punisher’s state in each cell and characterize the rates of
switching between circuit states by simulating our resource-aware single-cell model (figure 5a). The resultant model is depicted
in figure 5b and described and parametrized in electronic supplementary material, Note S5. The cell population is split into
24 = 16 genetic states based on the functionality of: the burdensome gene to be retained (B); the switch and integrase genes
(S, treated as one gene due to being co-expressed); the synthetic protease gene (P); and the CAT gene (C). If a given gene
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TOG22CAT
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Figure 4. Comparing the Punisher's and essential gene co-expression's ability to penalize mutations of two synthetic toggle switches. (a) Schematic of two toggle
switches with all genes co-expressed with essential CAT gene copies. (b) The host cell's steady-state growth rates (obtained by simulating the system for 50ℎ)
with certain genes mutated relative to its growth rate with all synthetic circuitry fully functional. The two toggle switches were assumed to be present in the cell
without any mutation-penalizing circuitry, alongside the Punisher as shown in figure 3, or co-expressed with the CAT gene as per (a). For the latter, we consider CAT
mRNA-ribosome association rates 0.24 < kcatyz+ < 60 nM−1 h−1 [4,29,30], showing the minimum and maximum relative growth rates in this RBS strength range.
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is mutated, the genetic state’s index has a ′ mark after the corresponding letter. Each genetic state can have three possible
states of the Punisher—the high-expression equilibrium (H), the low-expression equilibrium (L) or else no integrase and switch
proteins present (0), e.g. when the Punisher has mutated and all its previously synthesized proteins have been removed from
the cell. If some equilibrium does not actually exist in a given genetic state (like the low-expression equilibrium when the
burdensome gene is non-functional), the corresponding cell state’s properties are assumed identical to those of its closest
unmutated progenitor according to electronic supplementary material, table S7. We thus have 16 × 3 = 48 variables in total, each
representing the abundance of cells with a given genetic state and a given state of the Punisher. The index j = B′SPC : H, for
example, stands for cells with the Punisher in the high-expression equilibrium and only the synthetic burdensome gene B being
non-functional.

Each cell in state j divides at a rate λj to produce two daughter cells, usually in the same state—however, with probabilityμ a still-functional gene may mutate, making the daughter cells contribute to another genetic state’s cell count. A genetic
state transition can also be caused by the CAT gene’s excision at a rate dependent on the integrase’s concentration (i.e. on
the Punisher’s state). Genetic changes do not directly affect the Punisher; instead, the Punisher’s transition rates are fixed but
dependent on the cell’s genetic state. We determine them by simulating our resource-aware single-cell model stochastically [33].
This captures both ‘true positive’ detection of mutations predicted by ODE simulations and ‘false positive’ activations of the
Punisher due to the stochasticity of gene expression, as well as accounting for the effects of stochasticity on the timescale of the
self-activating switch gene’s expression dynamics [24].

In summary, the evolution of cell counts in the bioreactor is given by

(4.1)xẋ = (DD + AA + TT − L(xx, dd))xx,

where x is the 48-dimensional vector of cell counts by the state and d is the vector of corresponding cell division rates.
The matrix DD contains rates of different states’ cell counts changing due to cell division (which includes the possibility of

mutations). The matrix TT captures transitions between the states of the Punisher, whereas A represents rates of the cells’ genetic
state changes due to integrase action. Definitions for d, D, A and T are provided in electronic supplementary material, Note S5.
Finally, if the bioreactor is a turbidostat keeping the overall cell abundance constant [15], it dilutes all cells at the rate

(4.2)L(xx,dd) = xx ⋅ ddsum(xx) .

4.2. Population simulation results
To gauge the Punisher’s population-level performance, we integrated equation (4.1) over time, starting at the initial condition
where all cells in the bioreactor had all synthetic genes unmutated and the Punisher in a low-expression equilibrium, i.e.

(4.3)
xxj(0) = 109  if j = BSPC:L

0  otherwise
.

For comparison, we simulated a population of cells lacking the Punisher’s switch, integrase and protease (hence the zero switch
and integrase protein level), but still hosting the burdensome and CAT genes. This stands for the initial condition

(4.4)
xxj(0) = 109  if j = BS′P′C:0

0  otherwise
.

Representative simulated trajectories for cell populations with and without the Punisher, plotted in figure 5c,d,e, qualitatively
confirm that our design allows to prolong the prevalence of cells with a functional burdensome gene. A quantitative measure
of an engineered cell population’s productivity is its rate of burdensome protein synthesis per cell Θ, defined in equation (4.5),
where pb(j) is the burdensome protein content of a cells in state j, found by simulating our ODE single-cell model [7].

(4.5)Θ =
∑jxxj ⋅ ddj ⋅ pb(j)

∑jxxj .

To gauge the cells’ total productivity over time, Θ can be integrated over the culture duration tcult = 500 to find the total
burdensome protein yield per cell Y . Moreover, Θ can be tracked over time to find a population’s function duration τ, which
we define as the time for which H remains above 50% of its maximum value. Plotting these metrics in figure 5f,g demonstrates
that the Punisher increases cell population productivity’s robustness to mutations roughly 1.5-fold over a wide range of gene
mutation rates.

The Punisher’s observed beneficial effect on the engineered population’s function duration is explained by the cells having
to accumulate two mutations, instead of just one, in order to gain a substantial growth advantage. As shown in figure 5d, cells
with just the burdensome gene mutated (state B′SPC) multiply very slowly, becoming noticeable only at t ≈ 100 h. Indeed, the
Punisher detects the reduced burden in them and disables their CAT gene. The resultant B′SPC′ cells divide very slowly, being
rapidly diluted out of the bioreactor. The rapid displacement of original engineered cells therefore only becomes possible when
a (rare) B′SPC mutant also mutates the Punisher’s switch and integrase genes to escape penalization.

In practice, delaying mutation spread’s onset with the Punisher may prove even more beneficial for the cell population’s
productivity than predicted, which can be understood through the lens of the clonal interference phenomenon [34]. Besides
synthetic gene mutations, cells in a bioreactor may undergo native gene mutations with a growth advantage which, while
not triggering the Punisher, may exceed the benefit gained from synthetic gene expression loss (see electronic supplementary
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material, Note S4.1). Therefore, the Punisher’s extension of the time throughout which original engineered cells predominate in
the population increases the chance of such advantageous native gene mutations first arising in the cells with fully functional
synthetic circuitry. This may allow them to outgrow undesirable cells with a mutated synthetic burdensome gene.

5. Discussion
In summary, we have leveraged known resource competition phenomena to design a novel versatile biomolecular controller
that counters mutation spread in engineered cell populations. Simulations show that it can successfully disable cell growth
upon burden-reducing mutations of different synthetic circuits’ genes, hindering the takeover of engineered cell populations
by mutants (§§2.1, 3.1 and 4). Importantly, the same DNA implementation of the Punisher can be re-used across various
applications simply by adjusting the culture medium’s chemical inducer content (§2), which avoids costly DNA redesign
and synthesis steps characteristic of extant mutation spread mitigation strategies [6,8]. Moreover, the Punisher directly senses
resource competition through which synthetic gene expression impairs engineered cells’ growth. Consequently, it is only
triggered when synthetic gene expression loss accelerates the mutant cell’s growth, whereas other approaches may exhibit
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unintended reactions to mutations that do not provide a growth advantage, inadvertently making engineered cell populations
less genetically stable (§3.2).

Our design was studied using a coarse-grained resource-aware cell model [5], enabling a holistic view of cell growth’s
burden-dependence that underlies mutation spread in cell populations, as well as the contribution of native and synthetic genes
to the resource competition sensed by the Punisher, and the effect of antibiotics leveraged to penalize mutations when resistance
is disabled by our circuit. Possessing more predictive power than the basic gene expression models that ignore the cellular
context, our modelling framework is also less complex than finer-grained cell models. This enables mathematical derivations
that elucidate the Punisher’s switching behaviour and allow to determine the threshold value of burden at which it becomes
activated. Furthermore, the computational efficiency of cell model simulations allows to define the rates of cells switching
between different states in a population based on stochastic single-cell trajectories rather than arbitrary parametrization [7].
Since synthetic genes in our model are described using physiologically relevant gene expression parameters like promoter
strength and ribosome affinity, our approach establishes a novel rigorous method of directly linking a circuit’s (burden-depend-
ent) population dynamics to its design parameters.

The Punisher is primarily intended for deployment alongside synthetic genes that hinder cell growth predominantly via
gene expression burden, which presently comprise a large proportion of synthetic biology constructs [35]. Our design is also
mainly aimed at mutations reducing gene expression wholly or at least significantly, since they cause greater detriment to
engineered cell populations’ productivity, spread across populations faster (due to conferring a greater growth advantage
to mutant cells), and are thus less likely to be thwarted by clonal interference from functional cells with beneficial native
gene mutations [34]. However, the Punisher may still prove useful outside of its intended applications. Namely, it can penal-
ize mutations of metabolically burdensome synthetic genes (electronic supplementary material, Note S2.5). Relatively small
reductions in synthetic gene expression—such as mutations of just a few gene copies among many or mutations only partially
disabling expression—may still be penalized by the Punisher if its switching threshold Ξ is appropriately tuned (electronic
supplementary material, Note S2.4). Moreover, even when synthetic gene mutations do not reduce burden below this threshold,
the Punisher renders them less favourable than native gene mutations with equivalent growth advantages, contributing to the
slowdown of engineered functionality loss by cell populations (electronic supplementary material, Note S4.1).

Although this study includes extensive simulations and analysis of the Punisher’s performance, important avenues of
research remain to be explored. While our findings indicate that the Punisher should extend engineered cell populations’
functionality in the face of native gene or partially disabling gene mutations, their population-wide effects could be
investigated further by extending our cell population model. However, in this case efficient simulation could prove
challenging due to the need to consider more cell states. The Punisher is also yet to be implemented and tested in vivo.
Nonetheless, past studies provide solid foundations for this effort—indeed, individual features of our design, such as gene
self-activation and integrase-mediated disabling of chloramphenicol resistance, have already been achieved and tested in
bacteria [7,9].

In conclusion, we have proposed a promising versatile biomolecular controller design, the same genetic implementation
of which can improve engineered cell populations’ genetic stability in diverse applications. More generally, the present study
represents a showcase and a blueprint for how insights from cell modelling both on a single-cell and population level can
facilitate several different aspects of resource-aware biomolecular controller development.
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