
Computational Synthetic Biology Enabled through JAX: A Showcase
Published as part of ACS Synthetic Biology special issue “IWBDA 2023”.

Olivia Gallup,* Kirill Sechkar,* Sebastian Towers,* and Harrison Steel*

Cite This: https://doi.org/10.1021/acssynbio.4c00307 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Mathematical modeling is indispensable in synthetic biology but remains underutilized. Tackling problems, from
optimizing gene networks to simulating intracellular dynamics, can be facilitated by the ever-growing body of modeling approaches,
be they mechanistic, stochastic, data-driven, or AI-enabled. Thanks to progress in the AI community, robust frameworks have
emerged to enable researchers to access complex computational hardware and compilation. Previously, these frameworks focused
solely on deep learning, but they have been developed to the point where running different forms of computation is relatively simple,
as made possible, notably, by the JAX library. Running simulations at scale on GPUs speeds up research, which compounds enable
larger-scale experiments and greater usability of code. As JAX remains underexplored in computational biology, we demonstrate its
utility in three example projects ranging from synthetic biology to directed evolution, each with an accompanying demonstrative
Jupyter notebook. We hope that these tutorials serve to democratize the flexible scaling, faster run-times, easy GPU portability, and
mathematical enhancements (such as automatic differentiation) that JAX brings, all with only minor restructuring of code.
KEYWORDS: synthetic biology, JAX, computational, modeling, simulation, machine learning

■ INTRODUCTION
Mathematical modeling is an essential stepping stone on the
road to rendering biology a true engineering discipline.1 Since
the seminal works on the repressilator2 and the genetic toggle
switch,3 a plethora of software tools have emerged to support
such model-driven design.4−9 As an example, software tools,
including PyTorch, Tensorflow, and JAX developed largely for
AI research have been leveraged to tackle challenges in
computational biology. Their advanced handling of matrix
computation, just-in-time (JIT) compilation, and integration
with graphical processing units (GPUs) greatly enable and speed
up complex modeling tasks.10−13 JAX in particular shows
promise for broad mathematical applications, as it requires the
least setup for computations on GPUs compared to PyTorch,
Tensorflow, MATLAB (and MLX), or Julia, reads and behaves
just like the popular Python mathematical package NumPy, and
within synthetic biology has recently been used for simulating
SBML models.7,14 Its three flagship functions for parallelization
(jax.vmap), automatic differentiation (jax.grad), and
JIT compilation (jax.jit) can easily wrap existing NumPy-

based functions (jax.numpy), making JAX especially
amenable to speeding up and scaling up data science workflows
alongside a broad array of mathematical modeling.
In this work, we present three showcases that use common

computational biology modeling approaches and leverage the
JAX suite of tools and supporting packages. In each showcase,
we describe the problem under investigation, the construction of
models, and the structure of the implementation, summarized in
Figure 1. All showcases are tied together through the goal of
designing a biological system that can fulfill a desired function.

Received: April 29, 2024
Revised: August 25, 2024
Accepted: August 27, 2024

Technical Notepubs.acs.org/synthbio

© XXXX The Authors. Published by
American Chemical Society

A
https://doi.org/10.1021/acssynbio.4c00307

ACS Synth. Biol. XXXX, XXX, XXX−XXX

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
O

X
FO

R
D

 o
n 

Se
pt

em
be

r 
5,

 2
02

4 
at

 1
3:

50
:0

6 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/curated-content?journal=asbcd6&ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Olivia+Gallup"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kirill+Sechkar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sebastian+Towers"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Harrison+Steel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acssynbio.4c00307&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?fig=tgr1&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acssynbio.4c00307?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


■ RESULTS AND DISCUSSION
Showcase 1: Automatic Differentiation and Optimi-

zation of Gene Circuits. As an introduction, we will first
showcase how to simulate a dynamic differential-equation
system and optimize its parameters (Figure 1a). Let us consider
the case of a system of interacting genes, for example a genetic
circuit where transcription factors control the expression of a

fluorescent reporter protein by modulating the rate of
transcription. Depending on the network topology and
interaction rates between genes and proteins, biological motifs
emerge that can exhibit a range of possible stable states,
oscillations, or adaptation to perturbations.2 The latter is an
important engineering goal as biological systems must mediate a
variety of perturbations that can potentially derail the intended

Figure 1.Overview ofmodel structure for showcases. (A) Simulating a differential equationmodel to search a large parameter space for effective circuit
parameters. (B) Simulating cell models using a combination of deterministic and stochastic state evolution allows large models with fast reaction rates
to be simulated over long time-periods. (C) Statistical models of evolution such as the simulatedNK landscape significantly benefit from parallelization
in JAX.

ACS Synthetic Biology pubs.acs.org/synthbio Technical Note

https://doi.org/10.1021/acssynbio.4c00307
ACS Synth. Biol. XXXX, XXX, XXX−XXX

B

https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?fig=fig1&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.4c00307?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


functionality of a circuit. Our objective is to find a set of
parameters for the genetic circuit that will enable the system to
adapt to perturbations.
Optimizing such a system using parallelization and automatic

differentiation can offer significant advantages when compared
to previous approaches. In Ma and Tang et al. 2009,15 a large
survey of circuit topologies and parameter strengths was carried
out to identify motifs that were a prerequisite for adaptation by
running individual simulations in a brute force parameter sweep.
Later works16 have since confirmed and expanded upon the
proposed adaptation prerequisites through proofs to guarantee
viable topologies. Nevertheless, practically implementing a
parameter search on a candidate biological design may require
the evaluation of multiple topologies to choose between
preferable local maxima or the constraint of some parameters
that have already been predetermined. GeneNet17 employs
automatic differentiation for optimizing a circuit to a given target
functionality in PyTorch. We will purposely use a very similar
approach here to retain comparability but employ JAX and
several of its supporting libraries for numerical approximation
and optimization, including Diffrax and Optax, to retain the
benefits of flexible parallelization, automatic differentiation, and
JIT compilation. For a more detailed description of the problem
setting, see 1 Supplementary Section 1. The model structure,
loss functions, and relevant variables are described in the full
walk-through included in the notebook in this repository:
https://github.com/olive004/optimising_gene_circuits.
In this relatively simple example, we initialize a set of circuits

randomly and optimize each one individually by leveraging the
jax.vmap function without rewriting the single-circuit
simulation functions. After simulating the dynamics of each
circuit, each optimization loop is run by the jax.lax.scan
function which is further sped up by JIT compilation with a
jax.jit wrapper, again without rewriting any core code. The
dynamics are scored through the objective function, which is
wrapped with the jax.grad in order to automatically
differentiate with respect to the circuit parameters, which are
then updated using the Adam optimizer available through Optax
(optax.adam). Because a function only has to contain JAX
primitives in order for it to be wrapped in the described manner,
and because the vast majority of NumPy functions are available
in jax.numpy, the outsized benefits gained from GPU-based
parallelization, JIT compilation, and automatic differentiation
can be integrated easily into a typical data science workflow for
systems and synthetic biology.

Showcase 2: Stochastic Cell Model Simulations.
Dynamic simulation of genetic circuits is an integral part of
design and prototyping in synthetic biology. However, biology is
not deterministic. Extending from Showcase 1, taking
stochasticity into consideration is crucial, as randomness is a
central feature of living systems and may give rise to behaviors
that cannot be explained through deterministic simulations.18

For example, deterministic simulations are not suited to
identifying bistability, noise attenuation, and genetic glitches.19

We explore the benefits of a JAX implementation of a Tau-
leaping algorithm,20 which is based on the Gillespie algorithm
for approximating stochastic systems and is amenable to large
models thanks to its increased simulation efficiency.
To investigate the potential of JAX-accelerated simulation of

stochastic processes, we apply it to resource-aware cell models
that consider synthetic circuit genes alongside the genes
governing the metabolism of the cell that hosts them, as well
as external factors such as the density of energy sources in the

growth medium and the presence of antibiotic compounds (see
Figure 1b). This context-aware modeling is motivated by
observations that synthetic genes are affected (e.g., in terms of
expression level) both by one another and by the host cell’s
state10,21 (for more problem setting details, see Supplementary
Section 2). However, this has typically been difficult to
computationally investigate, as models that incorporate large
numbers of species/interactions and/or reactions with very fast
rates quickly become computationally unwieldy. In this case,
efficient means of simulation drastically alter the usability of a
model, especially because these complex memory-intensive
models must be run repeatedly (i.e., as Monte Carlo
simulations) to generate accurate distributions of possible
outcomes and behaviors.
Fortunately, the vectorization and GPU parallelization

described in Showcase 1 allow for a dramatic speed up in
stochastic simulations of these larger-scale models. This can be
seen upon running this guiding notebook (https://github.com/
KSechkar/rc_ecoli_jax/blob/main/jax_implementation/sim_
script.ipynb) to obtain 48 sample trajectories of a hybrid
resource-aware cell model,10 which comprises 11 stochastic
variables simulated with a tau-leaping algorithm and 6 variables
simulated deterministically using the Euler method (as their
stochastic fluctuations are averaged out in the cell22). Running
the model’s JAX-based implementation on a GPU (NVIDIA
GeForce RTX 4090) is 15 times faster than running the
analogousMATLAB script on the same PC, even when the latter
leverages parallelization to employ all 12 of the two-threaded
cores of an Intel(R) Xeon(R) w5-2455XCPU. As the number of
simulated trajectories increases, the JAX implementation’s
runtime scales sublinearly (suggesting we are still not fully
utilizing the GPU’s capacity), unlike MATLAB simulations that
can only run in sequence without a significant rewrite after the
CPU’s parallelization capacity is reached at 12 trajectories.
Meanwhile, although the model’s implementation in Python
without JAX is faster to simulate a single trajectory, its inability
to leverage parallelization on the GPU means that its linearly
scaling runtime exceeds that of JAX code for as few as three
trajectories being simulated (Figure 2).

Compute-heavy cases like these tend to be skipped in the
biodesign workflow by synthetic biologists as the time and effort
investments required to set up such simulations are typically too
high to consider on a routine basis. However, JAX allows for
code that is both efficient and easy to use and reuse�for
instance, this walkthrough notebook (https://github.com/
KSechkar/rc_ecoli_jax/blob/main/jax_implementation/

Figure 2. Log−log plot of the time taken to simulate 1 min of the cell
model’s stochastic dynamics using Matlab and JAX implementations.

ACS Synthetic Biology pubs.acs.org/synthbio Technical Note

https://doi.org/10.1021/acssynbio.4c00307
ACS Synth. Biol. XXXX, XXX, XXX−XXX

C

https://github.com/olive004/optimising_gene_circuits
https://github.com/KSechkar/rc_ecoli_jax/blob/main/jax_implementation/sim_script.ipynb
https://github.com/KSechkar/rc_ecoli_jax/blob/main/jax_implementation/sim_script.ipynb
https://github.com/KSechkar/rc_ecoli_jax/blob/main/jax_implementation/sim_script.ipynb
https://github.com/KSechkar/rc_ecoli_jax/blob/main/jax_implementation/howto_example.ipynb
https://github.com/KSechkar/rc_ecoli_jax/blob/main/jax_implementation/howto_example.ipynb
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?fig=fig2&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.4c00307?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


howto_example.ipynb) outlines the steps for repurposing the
resource-aware cell modeling framework discussed above for the
simulation of another gene circuit hosted by the cell. JAX’s
flexibility and user-friendliness therefore not only integrate well
into existing code but also offer insights that are otherwise only
available to those with sufficient coding skills and narrow the gap
between dry and wet lab scientists.

Showcase 3: Directed Evolution Strategies. In our final
showcase (Figure 1c), we consider population-level simulations,
specifically for predicting the effects of directed evolution
policies.23 For simulating a population of cells undergoing
evolution, we can use the NKmodel24 as an example. The titular
parameter N represents the size of the dictionary defining each
evolutionary unit, in this case the vector length of each gene, and
K defines the ruggedness of the fitness landscape. Other
parameters include the population size, choice of selection
strategy, chance of a mutation occurring within a gene, how
many genes there are in each cell, and howmany steps are run in
each iteration (see Figure 1c). This framework allows the
exploration of the NKmodel parameters and comparison to real
evolutionary landscapes, such as the previously mapped GB1
protein landscape.25 For more detail on the model, readers are
referred to the methods section of Towers and James et al.
2024.23

The NK landscape naturally lends itself to parallelization.
Each of the cells in a population may be simulated at the same
time, and each “fitness component” of a cell may also be
calculated simultaneously.
The automatic differentiation capabilities of JAX are in this

case secondary to the ease of parallelization of the entire
workflow. A population of cells subjected to directed evolution
may be efficiently simulated in parallel. By distribution of the
computation of fitness scores for each cell, this efficiency can be
retained even for large populations. By making each function
JAX-compatible, simulation runs can be layered simply by
wrapping functions with the vectorization function jax.vmap.
Functions that previously did calculations only for single
numbers can now work across matrices. This makes it easier
to control and vary many variables to identify overall trends,
such as changing the selection criteria in each generation or
using different distributions of genes. The key JAX benefits
highlighted by this example are flexibility and scalability. While
PyTorch also has a JAX-inspired vmap function, its use
supported cases are much more limited, even more so for
NumPy’s vectorization function.
Assessing the ability of evolution policies to elicit better

performers in a population requires many repeat simulations
with random initializations. In this case, not only is there
randomness in the trajectory each cell or gene takes as the
population evolves (for example due to random mutations
applied in each generation) but also the underlying equations,
such as the selection method or fitness landscape properties
themselves, also contain randomness, changing with every new
simulation. Unlike PyTorch or MATLAB, JAX treats random
keys as central to most functions and ensures independent
seeding by allowing keys to be split based on combinations of
keys and function outputs. Biases that might be introduced
accidentally when sampling distributions repeatedly or in
parallel can thereby be mitigated. The code guiding this example
can be found in this notebook (https://github.com/nesou2/
direvo_sim).

■ CONCLUSION
We have presented the benefits of integrating JAX into new and
existing systems and synthetic biology workflows. We compare
the ease of use and implementation compared to other
mathematical coding frameworks like PyTorch and MATLAB.
We show that JAX democratizes running large-scale simulations
with GPUs through parallelization, JIT compilation, and close
compatibility with existing packages, reducing the need for a
cumbersome rewrite of Python modeling scripts. Readers are
encouraged to explore the GitHub repositories linked in the
article. We hope that these examples and guiding code will
facilitate the adoption of JAX vectorization and automatic
differentiation into synthetic biology modeling efforts both
within and beyond the scope of applications discussed in the
present article.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307.

Supplementary notes for showcases 1 and 2 (PDF)

■ AUTHOR INFORMATION
Corresponding Authors

Olivia Gallup − University of Oxford, Department of
Engineering Science, OX1 3PJ Oxford, U.K.; orcid.org/
0000-0001-7341-6160; Email: olivia.gallupova@
eng.ox.ac.uk

Kirill Sechkar − University of Oxford, Department of
Engineering Science, OX1 3PJ Oxford, U.K.;
Email: kirill.sechkar@queens.ox.ac.uk

Sebastian Towers − University of Oxford, Department of
Engineering Science, OX1 3PJ Oxford, U.K.;
Email: sebastian.towers@eng.ox.ac.uk

Harrison Steel − University of Oxford, Department of
Engineering Science, OX1 3PJ Oxford, U.K.;
Email: harrison.steel@eng.ox.ac.uk

Complete contact information is available at:
https://pubs.acs.org/10.1021/acssynbio.4c00307

Author Contributions
O.G. conceived of and drafted the article and Supplementary
Section 1, and wrote the code for Showcase 1. K.S. wrote the
code and drafted content for Showcase 2 and wrote the
Supplementary Section 2. S.T. wrote the code and drafted
content for Showcase 3. H.S. supervised. All authors discussed,
edited and wrote the article.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
K.S. acknowledges support by the Clarendon Fund. O.G.
acknowledges support by Wadham College.

■ ABBREVIATIONS
CPU, Central processing unit; GPU, Graphical processing unit;
JIT, Just-in-time

■ REFERENCES
(1) Gallup, O.; Ming, H.; Ellis, T. Ten future challenges for synthetic
biology. Engineering Biology 2021, 5, 51−59.

ACS Synthetic Biology pubs.acs.org/synthbio Technical Note

https://doi.org/10.1021/acssynbio.4c00307
ACS Synth. Biol. XXXX, XXX, XXX−XXX

D

https://github.com/KSechkar/rc_ecoli_jax/blob/main/jax_implementation/howto_example.ipynb
https://github.com/nesou2/direvo_sim
https://github.com/nesou2/direvo_sim
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.4c00307/suppl_file/sb4c00307_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Olivia+Gallup"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7341-6160
https://orcid.org/0000-0001-7341-6160
mailto:olivia.gallupova@eng.ox.ac.uk
mailto:olivia.gallupova@eng.ox.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kirill+Sechkar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:kirill.sechkar@queens.ox.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sebastian+Towers"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:sebastian.towers@eng.ox.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Harrison+Steel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:harrison.steel@eng.ox.ac.uk
https://pubs.acs.org/doi/10.1021/acssynbio.4c00307?ref=pdf
https://doi.org/10.1049/enb2.12011
https://doi.org/10.1049/enb2.12011
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.4c00307?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(2) Elowitz, M. B.; Leibler, S. A synthetic oscillatory network of
transcriptional regulators. Nature 2000, 403, 335−338.
(3) Gardner, T. S.; Cantor, C. R.; Collins, J. J. Construction of a
genetic toggle switch in Escherichia coli. Nature 2000, 403, 339−342.
(4) Hill, A. D.; Tomshine, J. R.; Weeding, E. M. B.; Sotiropoulos, V.;
Kaznessis, Y. N. SynBioSS: the synthetic biology modeling suite.
Bioinformatics 2008, 24, 2551−2553.
(5) Watanabe, L.; Nguyen, T.; Zhang, M.; Zundel, Z.; Zhang, Z.;
Madsen, C.; Roehner, N.;Myers, C. iBioSim 3: ATool forModel-Based
Genetic Circuit Design. ACS Synth. Biol. 2019, 8, 1560−1563.
(6) Chandran, D.; Bergmann, F. T.; Sauro, H.M. TinkerCell: modular
CAD tool for synthetic biology. Journal of Biological Engineering 2009, 3,
19.
(7)Hucka,M.; et al. The systems biologymarkup language (SBML): a
medium for representation and exchange of biochemical network
models. Bioinformatics (Oxford, England) 2003, 19, 524−531.
(8) Funahashi, A.; Matsuoka, Y.; Jouraku, A.; Morohashi, M.; Kikuchi,
N.; Kitano, H. CellDesigner 3.5: A Versatile Modeling Tool for
Biochemical Networks. Proceedings of the IEEE 2008, 96, 1254−1265.
(9) Heirendt, L.; et al. Creation and analysis of biochemical
constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc.
2019, 14, 639−702.
(10) Sechkar, K.; Steel, H.; Perrino, G.; Stan, G.-B. A coarse-grained
bacterial cell model for resource-aware analysis and design of synthetic
gene circuits. Nat. Commun. 2024, 15, 1981.
(11) Yang, J.; Irwin, P. G. J.; Barstow, J. K. Testing 2D temperature
models in Bayesian retrievals of atmospheric properties from hot Jupiter
phase curves. Mon. Not. R. Astron. Soc. 2023, 525, 5146−5167.
(12) Etcheverry, M.; Moulin-Frier, C.; Oudeyer, P.-Y.; Levin, M. AI-
driven Automated Discovery Tools Reveal Diverse Behavioral
Competencies of Biological Networks. eLife 2024, DOI: 10.7554/
eLife.92683.
(13) Bradbury, J.; Frostig, R.; Hawkins, P.; Johnson, M. J.; Leary, C.;
Maclaurin, D.; Necula, G.; Paszke, A.; VanderPlas, J.; Wanderman-
Milne, S.; Zhang, Q. JAX: composable transformations of Python
+NumPy programs. GitHub, 2018. http://github.com/google/jax.
(14) Etcheverry, M.; Levin, M.; Moulin-Frier, C.; Oudeyer, P.-Y.
SBMLtoODEjax: Efficient Simulation and Optimization of Biological
Network Models in JAX. arXiv, 2023, arXiv:2307.08452 [cs, q-bio].
http://arxiv.org/abs/2307.08452.
(15)Ma,W.; Trusina, A.; El-Samad, H.; Lim,W. A.; Tang, C. Defining
Network Topologies that Can Achieve Biochemical Adaptation. Cell
2009, 138, 760−773.
(16) Bhattacharya, P.; Raman, K.; Tangirala, A. K. Discovering
adaptation-capable biological network structures using control-
theoretic approaches. PLOS Computational Biology 2022, 18,
No. e1009769.
(17) Hiscock, T. W. Adapting machine-learning algorithms to design
gene circuits. BMC Bioinformatics 2019, 20, 214.
(18)Wilkinson, D. J. Stochastic modelling for quantitative description
of heterogeneous biological systems. Nat. Rev. Genet. 2009, 10, 122−
133.
(19) Buecherl, L.; Roberts, R.; Fontanarrosa, P.; Thomas, P. J.; Mante,
J.; Zhang, Z.; Myers, C. J. Stochastic Hazard Analysis of Genetic
Circuits in iBioSim and STAMINA. ACS Synth. Biol. 2021, 10, 2532−
2540.
(20) Gillespie, D. T. Approximate accelerated stochastic simulation of
chemically reacting systems. J. Chem. Phys. 2001, 115, 1716−1733.
(21) Boo, A.; Ellis, T.; Stan, G.-B. Host-aware synthetic biology.
Current Opinion in Systems Biology 2019, 14, 66−72.
(22) Liao, C.; Blanchard, A. E.; Lu, T. An integrative circuit−host
modelling framework for predicting synthetic gene network behaviours.
Nature Microbiology 2017, 2, 1658−1666.
(23) Towers, S.; James, J.; Steel, H.; Kempf, I. Learning-Based
Estimation of Fitness Landscape Ruggedness for Directed Evolution.
bioRxiv, 2024, 2024.02.28.582468. https://www.biorxiv.org/content/
10.1101/2024.02.28.582468v1.

(24) Kauffman, S. A.; Weinberger, E. D. The NK model of rugged
fitness landscapes and its application to maturation of the immune
response. J. Theor. Biol. 1989, 141, 211−245.
(25) Wu, N. C.; Dai, L.; Olson, C. A.; Lloyd-Smith, J. O.; Sun, R.
Adaptation in protein fitness landscapes is facilitated by indirect paths.
eLife 2016, 5, No. e16965.

ACS Synthetic Biology pubs.acs.org/synthbio Technical Note

https://doi.org/10.1021/acssynbio.4c00307
ACS Synth. Biol. XXXX, XXX, XXX−XXX

E

https://doi.org/10.1038/35002125
https://doi.org/10.1038/35002125
https://doi.org/10.1038/35002131
https://doi.org/10.1038/35002131
https://doi.org/10.1093/bioinformatics/btn468
https://doi.org/10.1021/acssynbio.8b00078?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.8b00078?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/1754-1611-3-19
https://doi.org/10.1186/1754-1611-3-19
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.1109/JPROC.2008.925458
https://doi.org/10.1109/JPROC.2008.925458
https://doi.org/10.1038/s41596-018-0098-2
https://doi.org/10.1038/s41596-018-0098-2
https://doi.org/10.1038/s41467-024-46410-9
https://doi.org/10.1038/s41467-024-46410-9
https://doi.org/10.1038/s41467-024-46410-9
https://doi.org/10.1093/mnras/stad2555
https://doi.org/10.1093/mnras/stad2555
https://doi.org/10.1093/mnras/stad2555
https://doi.org/10.7554/eLife.92683
https://doi.org/10.7554/eLife.92683
https://doi.org/10.7554/eLife.92683
https://doi.org/10.7554/eLife.92683?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.7554/eLife.92683?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://github.com/google/jax
http://arxiv.org/abs/2307.08452
https://doi.org/10.1016/j.cell.2009.06.013
https://doi.org/10.1016/j.cell.2009.06.013
https://doi.org/10.1371/journal.pcbi.1009769
https://doi.org/10.1371/journal.pcbi.1009769
https://doi.org/10.1371/journal.pcbi.1009769
https://doi.org/10.1186/s12859-019-2788-3
https://doi.org/10.1186/s12859-019-2788-3
https://doi.org/10.1038/nrg2509
https://doi.org/10.1038/nrg2509
https://doi.org/10.1021/acssynbio.1c00159?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.1c00159?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1378322
https://doi.org/10.1063/1.1378322
https://doi.org/10.1016/j.coisb.2019.03.001
https://doi.org/10.1038/s41564-017-0022-5
https://doi.org/10.1038/s41564-017-0022-5
https://www.biorxiv.org/content/10.1101/2024.02.28.582468v1
https://www.biorxiv.org/content/10.1101/2024.02.28.582468v1
https://doi.org/10.1016/S0022-5193(89)80019-0
https://doi.org/10.1016/S0022-5193(89)80019-0
https://doi.org/10.1016/S0022-5193(89)80019-0
https://doi.org/10.7554/eLife.16965
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.4c00307?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

