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ABSTRACT

Anti-viral therapies are typically designed or evolved towards the current strains of a virus. In learning
terms, this corresponds to a myopic best response, i.e., not considering the possible adaptive moves
of the opponent. However, therapy-induced selective pressures act on viral antigens to drive the
emergence of mutated strains, against which initial therapies have reduced efficacy. To motivate our
work, we consider antibody designs that target not only the current viral strains but also the wide
range of possible future variants that the virus might evolve into under the evolutionary pressure
exerted by said antibodies. Building on a computational model of binding between antibodies and
viral antigens (the Absolut! framework), we design and implement a genetic simulation of the viral
evolutionary escape. Crucially, this allows our antibody optimisation algorithm to consider and
influence the entire escape curve of the virus, i.e. to guide (or “shape”) the viral evolution. This is
inspired by opponent shaping which, in general-sum learning, accounts for the adaptation of the
co-player rather than playing a myopic best response. Hence we call the optimised antibodies shapers.
Within our simulations, we demonstrate that our shapers target both current and simulated future viral
variants, outperforming the antibodies chosen in a myopic way. Furthermore, we show that shapers
exert specific evolutionary pressure on the virus compared to myopic antibodies. Altogether, shapers
modify the evolutionary trajectories of viral strains and minimise the viral escape compared to their
myopic counterparts. While this is a simple model, we hope that our proposed paradigm will enable
the discovery of better long-lived vaccines and antibody therapies in the future, enabled by rapid
advancements in the capabilities of simulation tools.

Keywords Machine Learning · Game Theory · Antibody Design · Opponent Shaping · Computational Biology

1 Introduction

Designing effective therapies to fight off viral pathogens is crucial. However, traditional approaches have been largely
myopic, focusing on the current variant of a virus without considering the future evolutionary pressures induced by
the therapies themselves. Although this shortsighted approach may yield therapies with high initial efficacy, it fails
to account for the virus’s adaptive response, leaving treatments vulnerable to viral escape and the emergence of new
therapy-resistant strains [1, 2, 3, 4, 5].

The COVID-19 pandemic starkly illustrated this challenge. While the rapid development of vaccines was a remarkable
achievement, concerns quickly arose about their long-term efficacy against new emerging COVID variants [6, 7].
For example, the B.1.351 variant demonstrated that the vaccine loses its effectiveness against new strains [8]. This
underscores the need for approaches that consider both the current and future efficacy of a designed therapy.

Toward this goal, we propose to design therapies that target not only current viral variants but also anticipate and
target future ones using a model of evolutionary adaptation. Specifically, viruses evolve in response to the selective
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pressures imposed by our therapies implying that the therapies we design exert a degree of influence over viral evolution.
Recognizing this, our goal is to develop therapies which steer the viral evolution away from escape.

This concept aligns closely with the principles of opponent shaping [9]. Opponent shaping is a multi-agent reinforcement
learning framework that allows agents to anticipate and influence the future strategies of other agents in their environment.
This approach, exemplified by methods such as Learning with Opponent-Learning Awareness (LOLA) [9] and Model-
Free Opponent Shaping (M-FOS) [10], encourages agents to consider not only their immediate rewards but also the
consequences of their actions on their opponents’ future behaviour. In the context of viral therapy, we view the virus as
an adversary that adapts to our chosen therapy strategy. By applying opponent shaping techniques to this problem, we
suggest optimising therapeutics to be more robust to future viral mutations and shape viral evolution in favourable
directions.

Building on these principles, our work focuses specifically on antibody design, framing the interaction between
antibodies and surface viral antigens as a two-player zero-sum game which we call the virus-antibody game. Importantly,
we include key functional constraints of the antibody and the virus in the game. Our framework applies opponent
shaping techniques to optimise antibodies for long-term effectiveness against evolving viral populations, limiting viral
escape.

Viral escape occurs when mutations in the virus allow it to successfully evade the host’s immune system [11]. In
the context of our game, the virus reduces or eliminates the antibody’s ability to bind effectively, i.e. it finds an
effective best-response strategy to the current antibody. We construct a simulated model of viral escape that captures
the adaptive responses to antibody pressure, using the Absolut! framework [12] to approximate the binding strength of
protein-protein interactions. Importantly, our simulations reveal that the conventionally “optimal” choice of antibody —
one that myopically maximises binding to the current virus — is suboptimal when considering a longer time horizon of
viral antigen mutations.

Based on this insight, our algorithm instead optimises antibodies with respect to their expected fitness over the entire
viral escape curve. We term these optimised antibodies shapers, in contrast to myopic antibodies that are selected
based solely on their efficacy against the current viral variant. Our results demonstrate that shaper antibodies not only
outperform myopic antibodies in long-term efficacy but also exert a shaping influence on viral evolutionary trajectories,
effectively constraining the virus’s ability to escape antibody binding.

Our study also explores the trade-offs between the effectiveness of shaper antibodies and the computational resources
required for their optimisation, providing insights into the scalability and potential for practical deployment of our
method.

Finally, we present an analysis of the key features that distinguish shaper antibodies from their myopic counterparts.
This explainability component provides insights into the amino acid sequence characteristics that contribute to long-term
antibody efficacy and viral evolution shaping within our simulations.

In summary, this work introduces a novel and general antibody design framework that leverages opponent-shaping
principles. By anticipating and influencing expected viral evolution, our method improves the long-term efficacy of
antibodies within our Absolut! simulations, and when combined with more accurate future simulators may assist in the
design of antiviral therapies that minimise the rate of viral escape.

2 Results

2.1 Computational Implementation of Opponent Shaping for Antibody Design

To implement opponent shaping for antibody design, we develop a computational framework that models the virus-
antibody interaction and optimises antibodies for long-term efficacy. Our approach comprises three main components:
defining the virus-antibody game with the player’s payoffs, simulating viral escape, and optimising antibody shapers.

2.1.1 Virus-Antibody Game

We formalise the interaction between antibodies and viruses as a two-player zero-sum game. In this game, two players –
the virus and the antibody – play a game where one player’s gain is the other’s loss. The game is defined by the set of
actions available to each player and their respective payoffs.

The players’ actions are represented by their amino acid sequences. The sequences are of an antigen protein for the virus
and a fragment of a hypervariable region of the heavy chain for the antibody, specifically the third complementarity-
determining region (CDRH3), which is the most important part of the antibody for defining its specificity and
affinity [15].
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Figure 1: Computational Implementation of Opponent Shaping for Antibody Design. a An overview of our
implementation. In the Antibody Optimisation Loop (i.e. the outer loop), we optimise the antibody to perform well
against the current and future virus variants and influence the viral evolution. We approximate the future variants
through the Simulated Viral Escape via Evolution (i.e. the inner loop) where the viral antigens are evolved against the
current antibody over a given horizon length. b The payoffs of the antibody and virus. Red arrows indicate binding
interactions that players aim to minimize, while green arrows represent those they aim to maximize. The antibody
optimises for binding to the virus while avoiding its anti-target. In this zero-sum game, the antibody’s optimisation
indirectly counters the virus’s binding to its target. c Efficient JAX [13] implementation of the binding calculation uses
binding poses generated by Absolut! [12] and the Miyazawa-Jernigan energy potential matrix [14].

The payoff structure is designed to capture the biological incentives of both players: the antibody aims to bind strongly
to the virus while avoiding binding to host proteins (an anti-target), whereas the virus seeks to evade antibody binding
while maintaining its ability to bind to host cell receptors (a binding target). Mathematically, we define the antibody’s
payoff Ra as:

Ra(v, a) = B(v, a)−B(t−a , a)−B(v, t+v )

where B(v, a) represents the binding strength between the virus v and antibody a, t−a is the antibody’s anti-
target, and t+v is the virus’s binding target. The virus’s payoff Rv is simply the negative of the antibody’s payoff:
Rv(v, a) = −Ra(v, a), see Figure 1b. This formulation also ensures that neither player can adopt an overly simplistic
strategy: the antibody can’t become universally “sticky” due to the anti-target penalty, and the virus can’t become
entirely inert without losing its ability to infect host cells. This game structure forms the foundation for our method, see
Methods section 4.1 for more details.
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To evaluate the binding strength B(·, ·) in our setup, we adapt the Absolut! framework [12]. Absolut! is a simplified
simulator for antibody-antigen binding. Unlike sequence-based machine learning models [16, 17, 18, 19] that cannot
generalise to novel viral mutations, or computationally intensive molecular dynamics simulations [20], Absolut! offers
a fast approach that generalises to both viral and antibody mutations, which is necessary for our application.

Specifically, the Absolut! framework operates by discretising the antigen structure, and evaluating the interaction
between the antigen and the CDRH3 region of the antibody’s heavy chain - the most variable portion of the antibody
[15]. It enumerates all possible binding poses of the CDRH3 to the discretised antigen and computes their binding
energy using the Miyazawa–Jernigan energy potential [14]. Absolut! outputs the binding energy E of the lowest energy
pose as the binding energy of a query antibody-antigen complex. The binding strength is high when the binding energy
is low. Thus we define our binding function as B(·, ·) = −E(·, ·), see Methods section 4.4 for more details.

To meet the computational demands of our opponent shaping approach, which requires rapid evaluation of numerous
antibody-antigen interactions, we reimplement the core binding calculation of Absolut! using JAX [13], a framework
that facilitates GPU-accelerated computation, see Figure 1c. Our efficient JAX implementation and the GPU acceleration
results in a 10,000-fold speedup compared to the original implementation, see Table 1.

Absolut! Absolut! + JAX

Hardware Apple M2 Max Nvidia A40
Time/Antigen (s) 1.8 2.1× 10−4

Table 1: Speed comparison of the binding calculation for a single antibody-antigen query between the original
implementation of Absolut! [12] and our reimplementation of Absolut! in JAX [13].

2.1.2 Simulated Viral Escape via Evolution

To simulate the space of possible viral escape trajectories against a chosen antibody, we model the virus learning to
play the game through an evolutionary algorithm. This approach approximates the process of viral evolution, where
mutations that increase fitness (in our case, the virus’s payoff Rv) are more likely to persist, propagate, and become an
ancestor of future generations.

We simulate the process of viral escape for a specified horizon of H steps, representing multiple generations of viral
evolution. This is the target duration of therapy efficacy. For each independent viral trajectory, we use the initial virus
strain v to generate a population of P virus variants through random mutations. These are point mutations in the amino
acid sequence of the viral antigen and they are introduced according to a predefined mutation rate. Each variant’s
fitness is evaluated based on its payoff Rv against the fixed antibody a. Importantly, this process captures the myopic
nature of viral evolution: the virus optimises its fitness only with respect to the current antibody, unable to anticipate
future human interventions or antibody changes. The next generation of the viruses is then created by probabilistically
selecting the variants based on their fitness, with fitter variants more likely to be chosen for replication and subsequent
mutation. This process repeats for H generations, creating one trajectory of viral escape, see the Simulated Viral Escape
via Evolution in Figure 1a and Methods section 4.2 for more details.

We use the antigen protein from the Dengue Virus as the virus for all our experiments, specifically, the structure with
PDB code 2R29 [21]. We discretise this structure using the Absolut! framework to generate the docking poses, which
we then use to calculate the binding strength B of any antibody-virus pair using our JAX implementation. In the viral
escape step, we mutate only the amino acid sequence of the dengue envelope antigen, which is composed of 97 amino
acids, and do not consider other components of Dengue Virus. Importantly, while we alter the amino acid sequence, we
assume the structure of the antigen does not significantly change for the calculation of binding strength.

2.1.3 Optimisation of Antibody Shapers

Our antibody optimisation process aims to generate antibodies that can prevent viral escape. We start with a random
antibody sequence and generate a population of antibodies of size Pa through mutations in the amino acid sequence.
Each new antibody in this population is created by introducing a single mutation to the original sequence.

We define the antibody fitness function FH
v (a) as the antibody’s performance over multiple potential viral escape

trajectories of virus v:

FH
v (a) = E

η escape trajectories of v

[
E

Hsteps of escape
(Ra(v

′, a))

]
(1)

4



Opponent Shaping for Antibody Development A PREPRINT

Specifically, for each of the η trajectories, we simulate the viral escape process for H steps and calculate the average
antibody payoff Ra over these steps, where v′ represents the possible mutations of the original virus v. The final fitness
is the average over these η simulations, i.e. η Monte Carlo roll-outs. The fitness function FH

v (a) captures the average
antibody’s long-term effectiveness against evolving viral populations.

The optimisation proceeds iteratively for N steps. At each step, we select the antibody with the highest fitness and
generate a new population of Pa antibodies by introducing single mutations to the selected antibody. This process of
evaluation, selection, and mutation continues, gradually improving the antibody’s robustness against, and ability to
limit, viral escape, see Antibody Optimisation Loop in Figure 1a and Methods section 4.3 for more details.

It’s worth noting the computational intensity of this process: a single step of antibody optimisation requires simulating
Pa × η independent viral escapes, each for H steps. Consequently, we refer to different optimised antibodies as
H = 5 shapers or H = 100 shapers, reflecting the horizon length chosen for the viral escape simulations during
their optimisation. Myopic antibodies are antibodies where horizon length H = 0 and thus F 0

v (a) = Ra(v, a). The
horizon length significantly impacts the antibody’s long-term effectiveness and the computational resources required for
optimisation.

This process can be viewed as meta-optimisation or meta-learning. The inner loop of our optimisation is the viral
escape simulation, where we model the virus learning to evade the current antibody. The outer loop or meta-loop is the
antibody optimisation process itself, which learns to generate antibodies that perform well across many possible viral
escape trajectories. We are designing antibodies that anticipate and influence the escape process of the virus, embodying
the core principle of opponent shaping in this biological context.

2.2 Antibody Shapers Minimise Viral Escape

2.2.1 Shapers vs. Myopic Antibodies

We validate the effectiveness of the antibody shapers in optimising the escape-averaged antibody fitness function FH
v (a)

compared to myopic antibodies that only respond to the current virus v. The myopic antibodies optimise the fitness
function F 0

v (a) = Ra(v, a), which considers only the immediate payoff against the non-mutated virus. For our shaper
antibodies, we select a long horizon of H = 100 to capture extended viral escape trajectories. Both shapers and myopic
antibodies are optimised for N = 30 steps. Figure 2a presents the performance distributions of shapers and myopic
antibodies under both objective functions.

Our results demonstrate a clear advantage for antibody shapers in the escape-averaged objective F 100
v (a). The mean

of the shapers distribution significantly exceeds that of the myopic distribution, as evident from the marginal density
plot in Figure 2a. Notably, none of the myopic antibodies outperforms the top 10% of shapers in this long-term
objective. However, there is a trade-off between short-term and long-term optimisation. While shapers do better on
the escape-averaged objective, they underperform compared to myopic antibodies in optimising the immediate payoff
Ra(v, a) against the initial, non-mutated virus v.

We next examine the influence of antibody shapers on viral escape trajectories, comparing H = 100 shapers with
myopic antibodies, both optimised for N = 30 steps. Figure 2b illustrates the viral escape curves induced by both
antibody types at different stages of their optimisation process. We first complete the antibody optimisation process,
saving antibodies generated at steps 0, 10, 20, and 30. For each of these optimisation steps, we then simulate viral
escape over H = 100 evolutionary steps using the corresponding saved antibodies. The presented viral escape curves
are averages derived from multiple simulations.

At the outset of the antibody optimisation process (step 0) both the shapers and the myopic antibodies induce similar
escape curves, an expected outcome given their initialisation from random antibody sequences. However, as we examine
antibodies from later optimisation steps, we observe diverging trends. Myopic antibodies cause the viral fitness to be
lower in the initial escape steps, outperforming the shapers. After about 10 escape steps, corresponding to ≈ 10 viral
mutations, the two antibody types perform similarly. Beyond that, shapers demonstrate superior results in later escape
stages, more effectively preventing viral escape.

These results show that as the antibody optimisation process progresses, shapers learn to influence viral trajectories in
a way that minimises long-term viral escape, albeit at the cost of initial performance. While myopic antibodies may
offer better immediate control, shapers provide more sustained effectiveness against evolving viral populations.

2.2.2 Antibody Shapers with Varying Horizons

Finally, we investigate the impact of varying horizons H on the optimisation process of antibody shapers. We optimise
myopic antibodies and shapers using horizons H = {5, 10, 20, 100} for N = 30 steps. To evaluate these antibodies

5
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a b

c d

Figure 2: Optimised antibody shapers outperform myopic antibodies. a Distribution of antibody shapers (in orange)
which were optimised with horizon H = 100 vs. myopic antibodies distribution (in blue). We highlight the top 10%
shapers with respect to F 100

v (a) in red and the top 10% myopic antibodies with respect to Ra(v, a) in green. The x-axis
is the myopic antibody fitness Ra(v, a) and the y-axis is the escape averaged antibody fitness over 100 steps of viral
escape. Higher values on both axes indicate better performance. b Viral escape curves for different steps of the antibody
optimisation process for antibody shapers optimised with horizon 100 (solid lines) and myopic antibodies (dashed
lines). The lighter lines indicate early antibody optimisation steps and the darker lines show the later steps. The x-axis
shows the evolutionary steps of viral escape. The y-axis represents the virus fitness/payoff Rv(v, a), where higher
values indicate better virus fitness (and lower values denote better antibody performance. c, d Antibody optimisation
learning curves for a varying horizon length. The x-axis shows the antibody optimisation steps (c) and the number of
samples from the binding simulator (d). The y-axis represents the escape averaged antibody fitness over 100 steps of
viral escape F 100

v (a). Error bars correspond to the standard error. Higher values indicate better performance.

against a consistent “true” objective, we simulate viral escape over H = 100 steps for each antibody, regardless of the
horizon used during its optimisation. Figure 2c presents these results, demonstrating that shapers optimised with longer
horizons H consistently yield better performance throughout all steps of the optimisation process.

However, the number of antibody optimisation steps does not accurately reflect the computational or experimental cost
of optimisation. Each simulation of viral escape requires a number of binding samples that increases linearly with

6
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the horizon length H . Yet, shorter horizon antibodies optimise an objective that diverges further from our antibody
objective F 100

v (a). Consequently, the optimal horizon varies depending on the available computational budget.

To illustrate this trade-off, we conduct an additional experiment shown in Figure 2d. Here, instead of fixing the number
of optimisation steps N , we constrain the total number of binding samples — queries to our binding strength simulator
used to evaluate all antibody and virus payoffs throughout the optimisation process — to be constant across different
horizons. This approach provides a performance comparison that accounts for the computational resources necessary
across varying horizon lengths.

Interestingly, H = 20 shapers perform strongly - nearly matching the performance of those optimised with horizon
H = 100 for a given number of antibody optimisation steps, and far exceeding it when accounting for the differing
computational cost. This suggests that using a cheaper, shorter-horizon, proxy for the true antibody objective F 100

v (a)
can yield substantial benefits.

We find that the optimisation horizon significantly influences the performance of antibody shapers. While longer
horizons generally lead to better long-term performance, the optimal horizon length is dependent on the available
computational resources. Thus, it is important to consider the balance between computational cost and the fidelity of
the optimisation objective when designing antibodies for long-term effectiveness against evolving viral populations.

2.3 How the Antibody Shapers Prevent Viral Escape

2.3.1 Attack is the Best Defence

Our previous results demonstrate that antibody shapers, particularly those optimised with longer horizons, manage
to effectively minimise viral escape. However, we hypothesise they can achieve this through two distinct strategies:
robustness or shaping. A robustness strategy involves developing antibodies that are inherently resistant to a wide range
of potential viral variants — a “good defence” approach. In contrast, a shaping strategy aims to actively influence the
evolutionary trajectory of the virus itself, creating evolutionary pressures that guide viral mutations in a direction more
favourable to antibody binding — an “attack” approach.

Figure 3: Effect of myopic and shaper antibodies on viral
antigens induced by other antibodies. We optimise 80
different antibodies for each horizon (Myopic, H = 5, H =
10, H = 20, H = 100), these are represented by the y-axis.
We simulate the viral escape to each of these antibodies
for 100 steps and we group the escaped viruses vH by the
horizon H of the antibody that induced them, these escape
viruses are represented by the x-axis. In colour, we show
the mean antibody payoff Ra(vH , aH′) for each group of
optimised antibodies against the final escape viral variant vH
induced by other antibodies aH′ . Darker colours correspond
to better antibody payoff.

To discern which strategy our antibody shapers adopt,
we investigate whether shapers optimised with different
horizons exert different types of evolutionary pressure
on the virus. We generate antibodies for each horizon
(Myopic, H = 5, H = 10, H = 20, H = 100) and
simulate viral escape against each antibody for 100 steps,
resulting in viruses vH . We then evaluate the antibody
payoff Ra(vH , aH′) for each horizon antibody against
the final viral variants vH induced by other antibodies
aH′ . Figure 3 presents the result of this analysis.

Interestingly, viruses v100 induced by H = 100 shapers
are consistently more exploitable by antibodies across
all optimisation horizons. This suggests that H = 100
shapers actively shape the escape trajectories of the virus
in a way that makes the resulting variants more suscep-
tible to antibody binding in general.

However, this shaping effect comes at a cost. The a100
shapers show slightly lower payoffs compared to the peak
performance of shorter-horizon antibodies (a5 and a10)
against the viruses v100 induced by the H = 100 shapers
(see right most column of Figure 3). This trade-off indi-
cates that to exert a stronger shaping influence on viral
evolution, H = 100 shapers sacrifice some degree of im-
mediate performance or robustness, that is their ability to
perform well against a wide range of viruses. Therefore,
a potential strategy could involve using a “mixture” of
antibodies as therapy: some optimised for shaping the
virus’s evolutionary trajectory, and others designed for
strong immediate binding.

7
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2.3.2 Amino Acid Distribution in Shapers and Myopic Antibodies

To further understand the performance differences between myopic antibodies and shapers, we analyse the amino
acid distributions of the antibodies. We compared myopic antibodies with shapers optimised using horizons H =
5, 10, 20, 100 over N = 30 antibody optimisation steps. Figure 4 showcases the results of our experiment.

Antibodies optimised with longer horizons, especially the H = 100 shapers exhibit a more uniform distribution of
amino acids, while those with shorter horizons show a tendency to cluster around amino acids associated with either
high or low binding energies. The flatter distribution of long-horizon shapers suggests a more diverse and balanced
approach to viral antigen binding. We hypothesise that this strategy helps to preserve robustness against viral mutations.
By maintaining a more even distribution across energy levels, these antibodies may be less susceptible to viral escape.

In contrast, the clustering behaviour we observe in shorter-horizon antibodies indicates a more specialised strategy.
By concentrating on amino acids at the extremes of the binding energy spectrum, these antibodies may achieve strong
immediate binding but potentially at the cost of long-term robustness.

Figure 4: Distribution of amino acids in myopic antibodies and shapers. The antibodies are optimised using different
viral escape horizons H . Longer horizon shapers push the amino acid distribution closer to a uniform distribution.

However, while this analysis hints at the robustness of long-term shapers, it does not fully explain the shaping behaviour
we observed in our previous results. In the next section, we investigate the distribution of amino acids within specific
binding poses.

2.3.3 Influence of Antibody Shapers on Binding Poses

In the Absolut! framework [12], binding poses are defined as sets of interacting residue pairs between the antibody
and the antigen. The binding energy of a pose is calculated by populating these residue locations with the amino
acid sequences of both the antibody and the virus and then summing the pairwise interaction energies defined by [14].
Absolut! considers a vast number of possible poses (on the order of 106) and determines the overall interaction energy
as the energy of the minimum pose, refer to Methods Section 4.4 for more details. Importantly, only a small part of the
antigen sequence contributes to this minimum energy pose.

As both the virus and the antibody mutate during our optimisation process, the lowest energy pose can change. To
capture these dynamics, we introduced the concept of a pose matrix: a 20×20 matrix2 where one dimension corresponds
to the antibody amino acids and the other to the viral amino acids, both contributing to the lowest energy pose. The
entries in this matrix represent the number of interactions between specific amino acid pairs.

Figure 5a presents average pose matrices from multiple optimisation runs of both myopic antibodies and long-horizon
shapers. We observe two key trends:

1. As viral escape steps increase (top row vs bottom row), the pose matrices become more “diffused”. This is
expected, as the virus explores more “pose possibilities” through mutations during escape.

2. As the horizon of antibody optimisation increases, the poses also become more “diffused”. This is particularly
interesting, as all antibodies have the same number of mutations regardless of the horizon, suggesting that this
diffusion might relate to the increased robustness of shapers.

220 is the number of possible amino acids.

8
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To further understand these pose dynamics, we aggregate the pose matrices along the antibody axis (Figure 5b) and the
virus axis (Figure 5c). These figures show the change in interaction counts between viral escape steps 0 and 100.

Figure 5b reveals a viral escape strategy: including more of the antibody’s lowest binding amino acids (particularly K)
in the pose. Notably, long-horizon shapers, especially H = 100 shapers, are most effective at preventing this increase
in K interactions. Furthermore, Figure 5c shows another viral escape strategy: removing its high-binding amino acids (I
and M) from the pose. Again, H = 100 shapers are most successful in counteracting this trend, although they cannot
completely prevent it.

Based on these observations, we hypothesise that the shaping ability of H = 100 shapers relies on two main mechanisms:

1. Preventing the virus from including the antibody’s lowest binding amino acids in the pose.

2. Inhibiting the virus from removing its own high-binding amino acids from the pose.

These strategies constrain the viral escape trajectories, making the resulting viral variants more susceptible to antibody
binding in general.

While these results are specific to our Absolut! binding simulator, they demonstrate that the behaviour of antibody
shapers is both explainable and intuitive. This work serves as a proof of concept, showing that opponent shaping
techniques can optimise long-horizon shapers to produce antibodies that more effectively prevent viral escape.

The transferability of these findings to more realistic binding simulators and viral escape models remains an open
question. However, these results are encouraging: we have demonstrated that shapers not only perform better and shape
viral escape trajectories, but we can also explain the strategies they employ to achieve this shaping effect. This analysis
underscores the potential of opponent shaping in antibody design and opens new avenues for developing more effective,
long-term strategies against rapidly evolving pathogens.

3 Discussion

This study introduces a novel framework for designing antibodies using the principle of opponent shaping [9] that can
effectively combat evolving pathogens. The core of our framework is a two-player game that models the interaction
between antibodies and viruses. Applying opponent shaping to the game allows us to optimise for antibody shapers that
anticipate and influence viral evolution.

The proposed framework is adaptable. While we demonstrated its efficacy using the Absolut! [12] binding simulator
accelerated with JAX [13] for payoff estimation, and our model of the simulated viral escape with an evolutionary
process, these components are interchangeable. As more accurate and efficient binding simulators or viral evolution
models become available, they can be integrated into our framework, potentially enhancing its biological applicability.

Our results demonstrate a clear advantage of antibody shapers over myopic antibodies when considering long horizons
of viral escape. We observed that myopic antibodies, while initially effective, struggle to maintain their efficacy as
the virus evolves. In contrast, shaper antibodies, particularly those optimized for longer horizons, show sustained
performance over extended periods of viral evolution, see Figure 2.

A notable computational trade-off emerges in the performance of antibody shapers. While longer optimisation horizons
generally lead to better long-term performance, they come at an increased computational cost. Figure 2d offers guidance
for selecting optimal optimisation horizons based on available computational resources and runtime of a binding
simulation which is particularly valuable for future applications of our framework.

Furthermore, our analysis reveals that long-horizon shapers shape the virus into more exploitable variants as opposed to
just becoming robust to any virus, see Figure 3. In fact, the short-horizon shapers bind stronger to the viruses included
by the long-horizon shapers than the long-horizon shapers themselves. This suggests exploring a mixture of antibodies,
some optimised for virus shaping and others for binding. This could leverage the benefits of both shaping the viral
evolutionary landscape and maintaining strong binding efficacy. Interestingly, a longitudinal study on rare patients who
naturally developed broadly neutralizing antibodies (bnAbs) to HIV showed that early neutralizing antibodies induce
HIV escape to those antibodies [22]. The bnAbs were later developed with the cooperation between the B cell lineages.
This indicates the constant evolving dynamics between the virus and our immune system in nature. In the future, our
approach could enable us to better understand and develop therapies for similar settings by simulating a game with
more than one antibody playing against the virus.

To provide insights into the mechanisms underlying the effectiveness of antibody shapers, we conduct an explainability
analysis focused on the amino acid distribution in shapers (Figure 4) and on binding poses (Figure 5). While these
results offer insights into the strategies employed by our antibody shapers, it’s important to note that they are specific to
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a

b

c

Figure 5: Influence of antibody shapers on binding poses. a Average pose matrices between antibodies optimised
using different horizons and the virus at various stages of its escape. The escape steps increase from left to right and the
horizon increases from top to bottom. The full grid of matrices with more antibody horizons and virus escape steps is
available in the Supplementary Information, Figure 7. b, c Aggregated sum of pose matrices w.r.t the antibody axis (b)
and w.r.t the virus axis (c). The plots show a change in the interaction counts in the poses from the viral escape step 0 to
100. Red indicates a decrease in the interaction count and green an increase.
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the Absolut! binding model [12, 14]. Antibodies designed using more accurate binding simulators might be able to
employ other strategies in their interactions with viruses. Nevertheless, the fact that we can explain the behaviour of our
antibody shapers is encouraging. It suggests that, even as we move towards more complex and realistic models, we may
be able to maintain a degree of interpretability in our approach.

While our approach shows promise, it’s important to acknowledge its current limitations, particularly in the modelling
of antibody-antigen interactions. Our study relies on the Absolut! framework which is a dramatically simplified model
of reality.[12] . Moreover, here we focus only on the CDRH3 binding domain of the antibody and consider a fixed
length (11 amino acid) region. Insertions and deletions are not within our scope of the study. Regardless of the CDRH3
region being the most critical for both antibody specificity and affinity [15], the other five binding regions (CDR1-3 on
both the heavy and light chains) also partially contribute to the binding profiles, either by making direct contacts with
the antigen or putting constraints on the conformational space. In future work, we want to extend the binding simulation
to all the CDR regions with both light and heavy chains.

A significant limitation of our current approach is the static structure of the viral antigen. In reality, mutations to the
virus induce changes in the structure of the viral antigen. However, in our experiments, we consistently use the original
structure of the 2R29 dengue viral antigen [21] and a fixed set of Absolut!-generated docking poses based on that
structure. As we introduce mutations to both the virus and the antibody, the identity of the lowest-energy pose changes,
but the underlying set of possible poses remains constant. This simplification potentially overlooks important structural
dynamics that influence antibody-antigen interactions. Ideally, we could model the structural changes that occur with
each introduced mutation to capture a more realistic representation of the evolving virus-antibody interaction landscape.
AlphaFold3 has demonstrated the capability to predict structures of antibody-antigen complexes from their sequences
with high accuracy [23]. Incorporating methods like AlphaFold3 into our framework would allow for the dynamic
updating of antigen structures in response to our simulated mutations. This would enhance the biological relevance of
our method.

Another promising avenue for enhancing our framework lies in the integration of more accurate viral escape forecasting
methods such as EVEscape [24]. EVEscape successfully anticipated the emergence of COVID-19 variants using only
pre-pandemic data. Incorporating such sophisticated viral escape forecasting as the simulated viral escape component
of our framework could significantly boost its real-world applicability. This integration can help to bridge the gap
between our computational approach and practical therapeutic development.

The implications of our work extend beyond the specific context of antiviral therapies. While our experiments focus on
the dengue virus, our framework is adaptable to any evolving pathogen or even the heterogeneity of cancers. This opens
up possibilities for applications in various fields where antibody therapies are increasingly important. Several programs
aim to develop antibody-based therapies against cancer in both clinical and pre-clinical stages, with a few already being
approved and included in the treatments.[25].

As computational models of protein interactions and evolutionary processes continue to improve, the principles of
opponent shaping in therapy design are likely to become increasingly relevant. Our work presents a “proof-of-concept”
for developing antiviral therapies that not only combat current viral strains but actively shape the evolutionary landscape
to our advantage. While significant challenges remain in translating these computational insights into pre-clinical
development, our study demonstrates the potential of opponent shaping in designing effective therapies against evolving
pathogens.

4 Methods

Our method applies the principles of opponent shaping [9] to a two-player game between the antibody shaper player or
agent and a naive virus agent (Figure 1a). In this section, we describe our method in detail.

Firstly, we introduce the virus-antibody game in Section 4.1 where we define the action spaces and the payoffs of both
players. Secondly, we define the simulated viral evolution process in Section 4.2 where the virus evolves to escape
in response to the current antibody. Finally, in Section 4.3 we define the antibody optimisation process where we
optimise the antibody shapers in a way that accounts for future viral mutations and learns to influence viral evolution
away from escape.

Importantly, implementing the virus-antibody game requires a way to determine the strength of binding of any antibody-
antigen pair, or as we refer to it later in this section a binding function. In section 4.4 we describe our binding function
choice, based on the Absolut! framework [12].
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4.1 Virus-Antibody Game

We frame our setting as a two-player zero-sum game between the virus (v) and the antibody (a), meaning that the gain
of one player is equal to the loss of the other player, and vice-versa. The action space of both agents is their respective
amino acid sequence, and the payoffs are defined by Figure 1b and are the negative of each other - i.e. an improvement
in antibody payoff results in a corresponding reduction of virus payoff of equal magnitude.

We define the set of 20 amino acids as A. Let Nv be the sequence length of the viral antigen, and Na be the sequence
length of the antibody. So an action of the virus will be v ∈ ANv , and an action of the antibody will be a ∈ ANa . In our
experiments, we use the dengue envelope antigen [21] as the virus, it is composed of 97 amino acids, thus Nv = 97.
Na is the sequence length of the antibody’s CDRH3 region which Absolut! [12] assumes to be 11 amino acids long, so
Na = 11.

Let B : ANv × ANa → R be our binding function, which measures the strength of the binding between the antibody
and the viral antigen with increasing values corresponding to stronger binding3. Intuitively, the main payoff/reward
for the antibody Ra should be Ra = B(v, a) since it describes the capacity of the antibody to bind the virus, and the
corresponding reward for the virus should be Rv = −B(v, a).

However, such a choice would lead to a globally optimal strategy for the viral antigen to be completely inert, while
the antibody would evolve to be maximally “sticky”. Such results fail to capture the biological realities: viruses
must retain their ability to bind to host cell receptors to function, and antibodies need to maintain a certain level of
specificity to avoid off-target binding [26]. Altogether, to create a biologically relevant and realistic game setting, we
must incorporate additional incentives into our objectives for both the antibody and the virus.

To achieve this, we introduce a binding target t+v for the virus. In the real world, this corresponds to the cell surface
receptor protein, that is used by the virus to enter the host cell. To mimic the requirement that antibodies should
not become self-reactive to the host proteins and trigger auto-immunity we also introduce a dummy anti-target t−a
representing a protein for the self, that is a target to which the antibody should not bind.

This establishes the complete antibody payoff that can be used in the framework of our two-player virus-antibody game:
Ra(v, a) = B(v, a)−B(t−a , a)−B(v, t+v )

With Rv(v, a) = −Ra(v, a). In this framework, the antibody gets a higher payoff not only if it binds the virus with
higher affinity, but also if the virus fails to bind its receptor or if the antibody has a lower risk of autoimmunity.

We can now define the simulated viral escape via evolution. In the following section, we leverage the viral payoff
Rv(v, a) as a fitness function to model how viruses might evolve to evade antibody binding. This simulates viral
trajectories that viruses could take in response to therapeutic pressure.

4.2 Simulated Viral Escape via Evolution

We model the escape of the virus v̂ by simulating the viral evolution from a fixed antibody a over a horizon H
number of steps. The simulated viral escape via evolution (see Figure 1a) is defined as follows. Given a starting
virus v̂, the fixed antibody a induces a distribution Ev(v̂, a) over sequences of viruses v̂1, v̂2, v̂3, . . . . We write that
v̂ = v̂0, v̂1, v̂2, . . . , v̂H , where v̂0 = v̂ and H is the horizon length. Then a viral escape trajectory is given by
v̂ ∼ Ev(v̂, a). Below we define the process of generating the escape trajectories inductively.

At generation i we have a population of P viruses vi1, v
i
2 . . . v

i
P . In our experiments P = 15. When i = 0, the

population is the starting virus v̂ duplicated P times. For every virus in the population, we evaluate its fitness given by
Rv(v

i
k, a). We then sample a new virus v̂i based on the fitness values, in particular:

P(v̂i = vik) ∝ exp(βRv(v
i
k, a))

With duplicates in the population being considered distinct, the likelihood of a particular variant increases with the
number of duplicates. Furthermore, β is a constant which reflects how random the selection process is, with β → ∞
reflecting deterministic max-fitness selection.

To generate the next population, v̂i is then duplicated and randomly mutated P times such that on average there is one
amino acid mutation in the viral sequence, so:

vi+1
k = v̂i ⊕ Mutation

After horizon H generations, a full escape trajectory v̂ = v̂0, v̂1, v̂2, . . . , v̂H is generated and the simulated viral escape
process ends.

3This is opposite to binding energies, which are smaller for stronger binding.
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4.3 Antibody Optimisation

We define the antibody fitness FH
v̂ (a) such that it represents the true objective of the antibody which accounts for the

viral escape. Given a horizon H and starting virus v̂, antibody fitness is:

FH
v̂ (a) = Ev̂∼Ev(v̂,a)

[
1

H + 1

H∑
i=0

Ra(v̂
i, a)

]
This is a precise definition of the antibody fitness, Equation 1 in Section 2.1.3 uses a simplified notation. Note that if
H = 0 this fitness defaults to a naive antibody payoff that ignores viral escape, i.e. F 0

v̂ (a) = Ra(v̂, a). We refer to this
as the myopic objective.

To optimise antibody shapers, we employ Monte Carlo simulations to estimate the antibody fitness combined with an
evolutionary algorithm. We refer to this process as the antibody optimisation loop, see Figure 1a. In meta-learning
terms, this is the outer loop or the meta-loop, contrasting to the inner loop which is the simulated viral escape via
evolution.

Given a starting antibody â, a starting virus v̂ and a viral escape horizon H , the antibody optimisation process generates
a trajectory of antibodies â = â0, â1, â2, . . . , âN , where N is the number of antibody optimisation steps (or meta-steps).
In the trajectory, â0 = â is the starting antibody and âN is the final optimised antibody. This optimisation could, in
principle, start from any antibody, but for simplicity we opt to start from purely random antibodies, meaning â is
random. In most of our experiments N = 30.

At antibody optimisation step i > 0, we have a population of Pa antibodies ai1, a
i
2 . . . a

i
Pa

. In our experiments
Pa = 40. We then sample their fitness values FH

v̂ (aij) with a fixed number η of Monte Carlo roll-outs, i.e. we sample η
independent viral escape trajectories each with horizon H viral escape steps. We found η = 5 to be sufficient. We then
select the best-performing antibody, âi:

âi = argmax
k

E
[
FH
v̂ (aik)

]
When i = 0, â0 = â is the starting random antibody. We generate the next population of antibodies ai+1

1 , ai+1
2 . . . ai+1

Pa

by taking both the antibody âi and Pa − 1 copies of it, each copy with a single random mutation to the amino acid
sequence of âi.

Once the final optimised antibody âN is generated, a full optimisation trajectory is complete â = â0, â1, â2, . . . , âN

and the antibody optimisation process finishes.

4.4 Binding Function

The methodology described so far is independent of the choice of the binding function B : ANv × ANa → R. In our
work, we rely on the Absolut! framework [12] to implement the binding function and in this section, we mathematically
formalise the binding energy calculation that Absolut! uses. For further explanation, readers are recommended to refer
to the original Absolut! paper [12].

For two given protein structures, there are many possible joint configurations. Each of these joint configurations yields
an energy. The configurations which are associated with lower energy will require more external energy to cause the
system to leave that state, meaning in turn that they are more stable. If the configuration is sufficiently stable, this may
be referred to as a binding pose.

In Absolut, poses are represented as pairs of residues4 which are adjacent to each other in that pose. In particular, the
pairs may be from the antigen to the antibody, or from the antibody to itself. We define the space of possible poses Φ:

Φ = 2Nv×Na × 2Na×Na

Where Nv and Na are taken to be the set of integers up to Nv and Na respectively.

The energy of a complex of a virus v ∈ ANv and an antibody a ∈ ANa , in a given pose (ϕv×a, ϕa×a) ∈ Φ is defined
by sum of the energies of each adjacent residues. The energy between a residue pair is determined by which two amino
acids it contains, given by a symmetric interaction matrix M : A×A → R which is determined experimentally by [14].

We then define the energy of a single pose to be:

Ê(a, b; (ϕv×a, ϕa×a),M) =
∑

(i,j)∈ϕv×a

M(vi, aj) +
∑

(i,j)∈ϕa×a

M(ai, aj)

4A single amino acid position on a protein
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Finally, given a set of poses S ⊆ Φ, the binding strength is:

B(v, a) = −E(v, a;S,M) = −min
ϕ∈S

Ê(v, a;ϕ,M) (2)

Absolut! generates S through a two-step process. First, Absolut! discretises a given structure of the virus v (or any
antigen) which is taken from the PDB [27]. Second, Absolut! does a brute-force search over possible (discretised)
poses for an antibody a to join to the viral structure. The exact details are not necessary for this paper, and again we
refer interested readers to the original paper.

However, we find that Absolut! generates more poses than we require. Since the energy function, E is a minimum
over poses, certain poses contribute far more than others. In particular, if a pose ϕ tends to yield higher energies, so
Ê(a, b;ϕ,M) is relatively large, it will have little impact on the result of B.

To give a more concrete example, for this paper, we use the dengue virus antigen [21]. Absolut! gives ≈ 1.5 million
poses for this structure. Absolut! also comes with ≈ 20 million real-world antibody sequences. When using the
base dengue sequence as the antigen, across the 20 million binding calculations only 1027 binding poses are ever the
minimum. Furthermore, the relevance of each pose drops exponentially. The most relevant pose accounts for 20%
of binding configurations, and by using the top 100 poses one would get the exact same result for binding in 95% of
antibodies. This gives us a way to make the computation 10005 times faster for a negligible performance drop for this
particular antigen sequence.

However, this leads to more errors as soon as we change the viral antigen sequence. Looking at the particular poses
which lead to binding does reveal another way to cut down on the total number of poses: all of the poses contain at least
18 pairs of residues. As the interaction matrix M is strictly negative, having more pairs of residues always makes the
binding energy of a pose lower, meaning it is more likely to be where binding occurs. Out of the original 1.5 million
poses, only approximately 37 thousand (1 in 40) contain 18 or more pairs of residues. When using only these residues,
we see no differences across any of the evolutionary simulations. It is possible that a pose with 17 or less pairs is the
dominant one for some antigen v with antibody a, but if so such pairs appear to be extremely rare.

Using these methods of pruning poses gives us two subsets of the original set of poses, a larger one which almost
exactly matches performance, and another which sometimes differs, but is much faster to compute. We refer to these as
the high-resolution and low-resolution binding simulators respectively.

Note that for the low-resolution binding simulator, the more mutations the virus undergoes the less accurate it becomes.
Furthermore, we also do binding to the antibody anti-target, t−a . To account for this, we compute the relevant poses for
this anti-target too.

When running experiments, we always train with the low-resolution binding simulator, then perform “verification”
with the high-resolution one and these are the results we report throughout the paper. The reason is twofold. Firstly
this enables us to run many more evolution experiments. Secondly, this mimics the real-life process of transferring
out of simulation to the real world. By showing we transfer from the low-resolution binding simulation to the slower,
high-resolution binding simulation, we demonstrate that our results are not extremely specific to the exact simulation
we use and that any result will not disappear as soon as a more accurate simulation is used.

We emphasise that Absolut! does not represent an accurate model of antibody binding. It is instead a toy simulation to
demonstrate our methodology. For example, we do not expect our framework when used with this simulation model to
yield superior, effective antibodies.

References
[1] Yiska Weisblum, Fabian Schmidt, Fengwen Zhang, Justin DaSilva, Daniel Poston, Julio CC Lorenzi, Frauke

Muecksch, Magdalena Rutkowska, Hans-Heinrich Hoffmann, Eleftherios Michailidis, Christian Gaebler, Marianna
Agudelo, Alice Cho, Zijun Wang, Anna Gazumyan, Melissa Cipolla, Larry Luchsinger, Christopher D Hillyer,
Marina Caskey, Davide F Robbiani, Charles M Rice, Michel C Nussenzweig, Theodora Hatziioannou, and Paul D
Bieniasz. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife, 9:e61312, October
2020. Publisher: eLife Sciences Publications, Ltd.

[2] Michael B. Doud, Juhye M. Lee, and Jesse D. Bloom. How single mutations affect viral escape from broad and
narrow antibodies to H1 influenza hemagglutinin. Nature Communications, 9(1):1386, April 2018. Publisher:
Nature Publishing Group.

5In practice, the difference is closer to 10, 000

14



Opponent Shaping for Antibody Development A PREPRINT

[3] Juhye M Lee, Rachel Eguia, Seth J Zost, Saket Choudhary, Patrick C Wilson, Trevor Bedford, Terry Stevens-
Ayers, Michael Boeckh, Aeron C Hurt, Seema S Lakdawala, Scott E Hensley, and Jesse D Bloom. Mapping
person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin.
eLife, 8:e49324, August 2019. Publisher: eLife Sciences Publications, Ltd.

[4] Adam S. Dingens, Dana Arenz, Haidyn Weight, Julie Overbaugh, and Jesse D. Bloom. An Antigenic Atlas of
HIV-1 Escape from Broadly Neutralizing Antibodies Distinguishes Functional and Structural Epitopes. Immunity,
50(2):520–532.e3, February 2019. Publisher: Elsevier.

[5] Allison J. Greaney, Tyler N. Starr, Pavlo Gilchuk, Seth J. Zost, Elad Binshtein, Andrea N. Loes, Sarah K. Hilton,
John Huddleston, Rachel Eguia, Katharine H. D. Crawford, Adam S. Dingens, Rachel S. Nargi, Rachel E. Sutton,
Naveenchandra Suryadevara, Paul W. Rothlauf, Zhuoming Liu, Sean P. J. Whelan, Robert H. Carnahan, James E.
Crowe, and Jesse D. Bloom. Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding
Domain that Escape Antibody Recognition. Cell Host & Microbe, 29(1):44–57.e9, January 2021. Publisher:
Elsevier.

[6] Alessandro M. Carabelli, Thomas P. Peacock, Lucy G. Thorne, William T. Harvey, Joseph Hughes, Thushan I.
de Silva, Sharon J. Peacock, Wendy S. Barclay, Thushan I. de Silva, Greg J. Towers, and David L. Robertson.
SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nature Reviews Microbiology, 21(3):162–
177, March 2023. Publisher: Nature Publishing Group.

[7] Jie Hu, Pai Peng, Kai Wang, Liang Fang, Fei-yang Luo, Ai-shun Jin, Bei-zhong Liu, Ni Tang, and Ai-long Huang.
Emerging SARS-CoV-2 variants reduce neutralization sensitivity to convalescent sera and monoclonal antibodies.
Cellular and Molecular Immunology, 18(4):1061–1063, April 2021.

[8] Shabir A. Madhi, Vicky Baillie, Clare L. Cutland, Merryn Voysey, Anthonet L. Koen, Lee Fairlie, Sherman D.
Padayachee, Keertan Dheda, Shaun L. Barnabas, Qasim E. Bhorat, Carmen Briner, Gaurav Kwatra, Khatija
Ahmed, Parvinder Aley, Sutika Bhikha, Jinal N. Bhiman, As’ad E. Bhorat, Jeanine du Plessis, Aliasgar Esmail,
Marisa Groenewald, Elizea Horne, Shi-Hsia Hwa, Aylin Jose, Teresa Lambe, Matt Laubscher, Mookho Malahleha,
Masebole Masenya, Mduduzi Masilela, Shakeel McKenzie, Kgaogelo Molapo, Andrew Moultrie, Suzette Oelofse,
Faeezah Patel, Sureshnee Pillay, Sarah Rhead, Hylton Rodel, Lindie Rossouw, Carol Taoushanis, Houriiyah
Tegally, Asha Thombrayil, Samuel van Eck, Constantinos K. Wibmer, Nicholas M. Durham, Elizabeth J. Kelly,
Tonya L. Villafana, Sarah Gilbert, Andrew J. Pollard, Tulio de Oliveira, Penny L. Moore, Alex Sigal, Alane Izu,
NGS-SA Group, and Wits-VIDA COVID Group. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against
the B.1.351 Variant. The New England Journal of Medicine, 384(20):1885–1898, May 2021.

[9] Jakob Foerster, Richard Y. Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor Mordatch.
Learning with Opponent-Learning Awareness. In Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’18, pages 122–130, Richland, SC, July 2018. International Foundation
for Autonomous Agents and Multiagent Systems.

[10] Chris Lu, Timon Willi, Christian Schroeder de Witt, and Jakob Foerster. Model-Free Opponent Shaping, November
2022. arXiv:2205.01447 [cs].

[11] Michaela Lucas, Urs Karrer, Andrew Lucas, and Paul Klenerman. Viral escape mechanisms – escapology taught
by viruses. International Journal of Experimental Pathology, 82(5):269–286, 2001.

[12] Philippe A. Robert, R. Akbar, R. Frank, Milena Pavlović, Michael Widrich, I. Snapkov, Andrei Slabodkin, Maria
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A Viral Mutation Distribution
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Figure 6: Distribution of selected viral mutations when evolved against different antibody horizons. Due to more neutral
mutations, the distribution is closer to uniform. Longer horizon antibodies cause fewer mutations on average.
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B Influence of Antibody Shapers on Binding Poses
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Figure 7: Full grid of pose matrices, they represent the average pose interactions between myopic antibodies or antibody
shapers optimised with different horizons and viruses at different stages of their escape.
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