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Abstract— The development of methods to understand and
control the population dynamics of microbial evolution remains
an outstanding question in synthetic biology and biotechnology
more broadly. Due to the stochastic nature of evolution, its
limited observability, and complex intra-population dynamics,
this presents a significant challenge. In this paper, we explore
techniques to control the evolutionary dynamics of a population,
based on manipulation of one or two orthogonal selective
pressures, which may in turn be coupled to mutagenesis.
Our approach builds on past research in evolutionary biology
that developed frameworks to study intra-population variant
competition during asexual adaptive processes (i.e. clonal in-
terference). Extending this theory, we design optimal control
strategies for one (or more) selective pressures that can be
used to maximise the rate of adaptation across a population
as a whole. We introduce a theoretical modelling framework
for this process, which we support with both simulations
and preliminary experimental data, providing a concrete basis
for emerging control approaches to directed evolution and
evolution-aware design.

I. INTRODUCTION

Continuous adaptive laboratory evolution (ALE) has be-
come an extensively used tool in modern biotechnology
applications [1, 2]. In a typical setup, a microbial population
is propagated for prolonged periods of time under con-
trolled conditions. Over the course of the experiment mutant
lineages spontaneously emerge and sub-populations with
improved fitness are naturally selected for, so that the mean
fitness of the population steadily increases over time. By
growing the population in a selective environment, the fitness
of an individual can be coupled to a phenotype of interest,
enabling ALE to optimise a wide range of biotechnologically
relevant traits.

In recent years, the fast development of laboratory au-
tomation technology has drastically increased the through-
put at which evolution experiments can be run, making it
possible to run continuous, automated evolution experiments
with minimal manual intervention. Particularly, the recent
development of programmable continuous growth devices [3,
4] enables a range of experimental parameters to be tightly
controlled over the course of an experiment. Therefore, a
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natural question is how these parameters should be selected
and/or controlled to optimise the evolution rate of a popula-
tion in an ALE experiment.

In this context, a fundamental issue is to understand how
the rate of adaptation of an asexual population depends
on key parameters of the system, such as the population
size, N, the per capita beneficial mutation rate, Ub, and
the distribution of fitness effects of acquired mutations.
When mutations are rare and population sizes moderate,
mutants that have acquired beneficial mutations generally
fix in the population far before new mutants can emerge
(where we consider a mutation as having fixed if it is
present in a large fraction of the population and becomes a
common ancestor of all future populations). In this Strong-
Selection-Weak-Mutation (SSWM) regime the adaptive walk
proceeds as a sequence of isolated selective sweeps. Hence,
adaptation rate is primarily determined by the influx of new
beneficial mutations in the population and, assuming a model
where all mutations have the same selection coefficient s,
the rate of fitness increase is proportional to NUbs2 [5].
However, in many practical applications, populations are
large and/or mutations are sufficiently common such that
new mutant lineages typically establish before earlier ones
can fix - defined as the Weak-Selection-Strong-Mutation
(WSSM) regime. In asexual populations, where recombina-
tion is absent, these lineages will compete with each other for
fixation – a phenomenon known as clonal interference. In
this interference regime, travelling-wave models have been
a popular framework [5–9] to study the dependence of the
adaptation rate on system parameters. Typically, these models
approximate the fitness distribution in the population as a
stationary wave travelling at constant speed. The dynamics
of the bulk of the population are modelled deterministically.
whereas the fittest edge of the distribution - the small number
of recently arisen mutants that have greater than average
fitness - is given detailed stochastic treatment. The speed of
the travelling wave is then obtained, implicitely or explicitly,
by equating the rates of adaptation implied by these two
analyses (for a full treatment of the matter, see [5]).

The dynamics of clonal interference become particularly
relevant to practical applications whenever multiple, com-
peting selective pressures operate in the same experiment
(Fig. 1). As an example, if in addition to a desired selective
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Fig. 1. In each generation of the evolutionary process, a mutation
establishes that improves adaptation to the selective pressures present (here
UV and chemical X). One pressure (here UV) is chosen such that it also
influences the mutation rate. The pressures can be controlled to optimally
steer the evolutionary trajectory for adaptation of a desired trait (here
resistance to chemical X).

pressure an experimentalist introduces factors such as UV
light or chemical mutagens to increase mutation rates in a
population, a second competing pressure would be added
to the system. This arises because these mutagenic sources
are often toxic to the cell, meaning tolerance-conferring
mutations can arise and provide mutants with a selective
advantage. If not controlled appropriately, the strength of this
secondary selective force can become comparable or even
greater than the primary one, effectively reducing the rate
and/or trajectory of evolution of the trait of interest in the
experiment.

In this work, we take initial steps to model and analyse
optimal control strategies for such evolutionary processes, in
which two coupled mutational processes compete with each
other. To this end, we consider a single-effect-size travelling
wave model of asexual adaptation [5] and extend it to account
for the presence of two competing processes. By computing
the probability of fixation for each mutant type, an expression
is derived for the adaptation velocity of each process under
interference. Hence, treating the selective pressure for each
adaptive process as an experimentally controlled input, an
optimisation problem is formulated so as to maximise the
rate of mutation accumulation in the adaptive direction of
primary interest. We derive analytical approximations for
this optimum as a function of the system’s parameters,
and validate our results against stochastic Fisher-Wright
simulations of adaptative dynamics.

II. RESULTS

A. Population Model

Our model is developed based on the approach of Desai
and Fisher [5]. We first briefly introduce their model, before
departing by extending it to consider the interactions between
two orthogonal traits. Note that our abbreviated introduction
of the modelling framework serves only to provide the
necessary context for our work - for a detailed explanation
of all terms and relevant derivations (for the single-trait
case) please refer to Desai and Fisher [5]. As usual for
population models, at small population sizes, the dynamics
must be treated stochastically, while at large population sizes,

they can be treated deterministically. While calculating the
time-dependent probability distributions governing the size
of mutant sub-populations is complex, Desai and Fisher
[5] showed that by calculating an (approximate) transition
time between the stochastic mutant birth-death process, and
the subsequent deterministic sub-population growth, it is
possible to derive analytical results that agree well with
simulation. This approach is particularly useful for our work,
as it allows us to find closed-form expressions to guide our
intuition regarding how system parameters can be optimised.

Consider a sub-population of n individuals of a larger total
population of size ∑i ni = N (Fig. 2). This sub-population’s
fitness, r, is defined as the difference between its growth
rate and the mean growth rate over the total population N. A
deterministic sub-population will therefore grow in frequency
within the larger population at rate dn/dt = rn (equivalently a
sub-population with below-average fitness −|r| would reduce
in frequency as dn/dt =−|r|n). Similarly, a stochastic sub-
population will follow a simple birth-death process, with
birth rate 1+r and death rate 1. Beneficial mutations occur at
rate Uβ , and increase the fitness of the sub-population from
which they arise by s. We assume both that all mutations
have the same fixed effect size s, and there are no deleterious
mutations (i.e. s > 0). These assumptions are motivated by
past work [5, 9]: allowing for variable effect sizes, one finds
that the beneficial mutations which tend to dominate the
process are narrowly distributed around a size s̃, and the
impact of deleterious mutations has in most cases minimal
impact on the overall process dynamics. Defining the most
fit sub-population to have fitness r = qs, Desai and Fisher
[5] showed that

q =
2ln(Ns)
ln(s/Ub)

and τq,i =
ln2(s/Ub)

2s ln(Ns)
(1)

where τq,i is the establishment time for a population to
arise and become deterministic in isolation. This “nose”
population (with fitness qs) is treated stochastically. It is is
fed by a deterministic “feeder” subpopulation with fitness
(q−1)s (Fig. 2).

Departing from the above single-trait process, in our
model there are two traits being selected for, referred to as
type α and β . Each has a single (but potentially different)
fitness effect size sα,β and beneficial mutation rate Uα,β .
Considering mutations of type α and β arising from a
common background (quantified below), we wish to calculate
the probability x that the type β of these two mutants
becomes fixed, conditional on the assumption that one of
these two fixes in the population as a whole. To proceed
we consider the “race” to fixation in two parts. First is
establishment, a period of length τq during which popula-
tion dynamics are stochastic, and will typically be “won”
by the mutant type with greater beneficial mutation rate
U . Following establishment is a period of approximately
deterministic growth, favouring whichever mutant provides
the larger fitness benefit (i.e. greater sα,β ). The rate at which
fixed mutations are acquired (i.e. combining both processes)
is given by Γq = τ−1

q , and the rate at which β mutations are
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Fig. 2. Subpopulations of average size ni with fitness is̄ make up the
total population of size N, with n0 ≈ N. At the nose, we examine how
the two possible leading subpopulations feed into the leading background
population. Populations with fitness ≤ (q−1)s̄ grow deterministically, while
the nose populations grow stochastically.

acquired is given by
Γβ = xΓq (2)

which we later seek to optimize.
Deterministic growth of each mutant sub-population be-

gins following their establishment, at which they have
reached size ≈ 1/qs̄ [5], where we define s̄ as the mean
effect size of mutations that fix in the population i.e. s̄ =
xsα +(1− x)sβ . Following establishment each has a growth
advantage of sα,β − s̄ compared to the mean mutation effect
size s̄ for mutants arising from the common background
(q−1)s̄ (see Fig. 2). This growth advantage is compounded
over the time taken to go from initial establishment to the
point at which each population reaches its maximum size
(i.e. fixation, where population size is on the order of ≈ N):
this takes (q− 1) establishment times, hence (q− 1)τq in
total. After this period mutant α will have a size advantage
of e(q−1)τq(sα−sβ ) compared to type β . If a mutant of type
β (rather than one of type α) is to fix it therefore needs to
have a similarly sized head-start at the time of establishment.
Thus, we approximate mutant β as having “fixed” if the
following condition is satisfied:

nβ (≈ τq)

nα(≈ τq)
> e(q−1)τq(sα−sβ ) (3)

. Conceptually (3) is stipulating that if (for example) sβ < sα ,
then a mutation of type β needs to reach establishment
quickly and grow by a factor of e(q−1)τq(sα−sβ ) before a
type α mutant establishes, lest it be overtaken in the race to
fixation (due to the α mutant’s faster deterministic growth).

We now calculate the probability of the condition in (3)
being satisfied following establishment. As we are primarily
analysing the (stochastic) dynamics of establishment, we
approximate both mutant types as having the same fitness
during establishment (i.e. qs ≈ (q−1)s̄+sα ≈ (q−1)s̄+sβ ),
but allow (potentially) different mutation rates. By making
this assumption we will observe that calculation of (3)
becomes independent of time.

Following from (3) we express the probability of a β mu-
tation achieving the requisite “head start” as P(n̄β > n̄α eη)
where η = (q− 1)τq(sα − sβ ) and n̄α , n̄β are independent

random variables. Assuming that the probability of β fixing
is less than 50% (i.e. P(n̄β > n̄α eη)< 0.5) we arrive at the
following expression:

x ≡ P(n̄β > n̄α eη) =
Uβ esβ ε

Uβ esβ ε +Uα esα ε
(4)

where ε = (q−1)τq.

B. Control Parameters

So far, we have assumed that the effect sizes of new
mutations, sα and sβ , are fixed constants. In practice, how-
ever, the selective advantage of a mutation is dependent
on the growth environment and, as such, can be tuned by
the experimentalist. For example, if the primary evolution
process under study involves increasing the tolerance to an
inhibitory compound, selective pressure in the system can be
modulated by varying the concentration of this compound
in the growth medium [10, 11]. In order to model this
possibility, we introduce two nondimentional parameters ᾱ

and β̄ , with ᾱ, β̄ ∈ {0,1}, corresponding to the level of
selective pressure applied on each adaptation process. To
simplify our analysis, we shall assume that selection acts
linearly on the system, so that the fitness effect size for each
process becomes

su → ūsu, u ∈ {α,β} (5)

Conceptually parameters ᾱ and β̄ are defining an envi-
ronment, and imply that mutations arising (which we are
approximating as having an identity independent of the
environment) nevertheless have a different effect (in terms
of their fitness benefit) depending on these parameters.

At the same time, increasing the selective pressure will
cause a proportionate, overall slow-down in growth, which
we model by rescaling the adaptation rates as

Γ → (1− ᾱ)(1− β̄ )Γ (6)

To gain an understanding of the above model, it’s useful to
consider some limiting cases, using the β mutation process as
an example. At very low selective pressure (β̄ ≈ 0), the popu-
lation grows approximately at its maximal rate, but mutations
introduce negligible fitness gains as there is no pressure
to which they can beneficially adapt, and so adaptation
is virtually absent. Conversely, at nearly maximal selective
pressure (β̄ ≈ 1), fitness gains from new mutations approach
their maximum, but the population grows vanishingly slow,
so that the timescale for the establishment and fixation of
new mutants become overwhelmingly large. Intuitively, then,
fitness-effect sizes and growth slow-down trade-off with each
other – if growth is inhibited there is conversely a large room-
for-improvement due to mutations – suggesting the existence
of an optimal level of selective pressure in between these
limits.

Finally, we consider the case where the two processes
under investigation are mutationally coupled. Practically, this
happens if a toxic mutagenic source, such as UV light, is
applied to the system, so that one of the two processes (which
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Fig. 3. Optimal control policies as a function of model parameters. Squares represent numerical estimates computed using a grid search over a discretisation
of the (ᾱ, β̄ ) space. For each choice of policy, the adaptation rate in the β direction was computed by averaging the output of 50 stochastic Fisher-Wright
simulations of the population’s dynamics, using an adapted simulation algorithm from [9]. Markers show the mean and standard deviation of 15 independent
replicates of this grid search. Dashed lines indicate the analytical approximations provided in the main text. A: Optimal policy as a function of h= sβ /(bUβ ),
with sα = sβ = 0.02, Uα = 5×10−7, and Uβ varied between 10−6 and 5×10−8. B: Optimal policy as a function of m = (asαUα )/s2

β
, with sα = sβ = 0.02,

Uβ = 5×10−7, and Uα varied between 10−6 and 5×10−8. C: Optimal policy as a function of sα/sβ , with Uα,β = 10−6, sβ = 0.02, and sα varied between
0.001 and 0.1. The vertical black line denotes the limit beyond which our analytical approximations are no longer valid. For all three cases, we set N = 1010

and a = b = 50.

we here assign to the α direction) involves evolution of tol-
erance to this input. Under these circumstances, increasing ᾱ

(which corresponds, for example, to increasing the intensity
of UV irradiation on the system) will also have the effect
of increasing global mutation rates. Assuming again a linear
effect, we thus have:

Uα →Uα(1+aᾱ)≈Uα aᾱ

Uβ →Uβ (1+bᾱ)≈Uβ bᾱ
(7)

where a,b are proportionality constants and the second ap-
proximation in (7) follows from assuming that we operate in
a regime where induced mutagenesis contributes the majority
of mutations to each process.

C. Maximising Adaptation Rate

By introducing coupling between the two processes, the
mutagenic input ᾱ affects evolution in the β direction both
positively, by increasing the influx of β -type mutations, and
negatively for two distinct reasons: it introduces a competing
selective advantage for mutations in the α direction, and also
slows growth overall according to (6). Assuming β to be the
process of primary experimental interest, we consider the
problem of finding an optimal input, (ᾱ∗, β̄ ∗), such that:

(ᾱ∗, β̄ ∗) = argmax
ᾱ,β̄

Γβ (8)

In order to derive an explicit expression for vβ in terms of
the control inputs, we note that, under the optimal operating
conditions, adaptation rate in the α direction should typically
be smaller than in the β direction, so that, in this regime,
the combined rate term in (2) can be approximated by the

rate in the β direction when present in isolation:

Γq = Γα +Γβ ≈ Γβ ,i ≈
2β̄ sβ ln(Nβ̄ sβ )

ln2(β̄ sβ/ᾱbUβ )
(9)

where we obtained the last equality substituting (5) and (7)
into (1). By the same argument, we can expect that at the
optimum,

ε = τq(q−1)≈ τβ (qβ −1) =
1

β̄ sβ

ln

(
β̄ sβ

ᾱbUβ

)
(10)

where the last equality follows from (1). Substituting these
two approximations into (2), and using the transformations
(5) and (7), we obtain an explicit, approximate expression
for Γβ valid in the vicinity of the optimum:

Γβ =
(1− ᾱ)(1− β̄ )

1+ ᾱasαUα

β̄bsβ Uβ

(
β̄ sβ

ᾱbUβ
)(sα ᾱ−sβ β̄ )/sβ β̄

×
2β̄ sβ ln(Nβ̄ sβ )

ln2(β̄ sβ/ᾱbUβ )

(11)

Introducing the lumped parameters

w =
ᾱ

β̄
, m =

asαUα

s2
β

, h =
sβ

bUβ

(12)

Equation (11) can be rewritten in the form

(1− ᾱ)(1− β̄ )︸ ︷︷ ︸
G

× 1

1+w2m(h/w)wsα/sβ︸ ︷︷ ︸
I

×
2β̄ sβ ln(Nβ̄ sβ )

ln2(h/w)︸ ︷︷ ︸
B

(13)

Here, we have split up the expression for Γβ into three
conceptual parts. The G term represents growth slow-down
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Fig. 4. Simulated evolution trajectories under the optimal (blue) and various suboptimal (orange, red) control policies. Here, the continuous lines track
the change over time in the mean number of each mutation type in the population. The full distribution of mutation frequencies within each population
at the final time point is shown via the green density plots for completeness. Each trajectory is of the same length in time, as measured by the number
of generations scaled by the slow-down factor (1− ᾱ)(1− β̄ ). Simulation parameters are N = 109, Uα,β = 10−5 and sα,β = 0.01. The optimal trajectory
(blue) fixes a larger number of β type mutations (compared to the ᾱ = 0 case, red) due to ᾱ increasing the value of Uβ , despite it also fixing ≈ 5 α

type mutations. However, for excessively high ᾱ (orange) the population fixes a large number of α type mutations, which reduces accumulation in the β

direction due to clonal interference.

due to the application of each pressure. The sigmoidal I term
models velocity slow-down arising from α type mutations
interfering with β type during the fixation process. Finally,
the B term corresponds to the adaption velocity the β process
would have if operating in isolation (but with selection
coefficient and mutation rate scaled by the choice of control
parameters), thus providing an upper bound on the magnitude
of Γβ .

With this expression at hand, we now proceed to study the
behaviour of the optimal input pair (ᾱ∗, β̄ ∗) as a function
of the remaining system’s parameters. We start by focusing
our attention on the primary selective pressure β̄ . In the
vicinity of the optimum, we expect interference from the α

process to be always rather contained, so that the dominant
contributions to the expression in (13) are given by the G
and B terms. In addition, for the typical parameter range
considered here (where N ≫ sβ and sβ/Ub ≫ 1), we have
that Nsβ ≫ 1 and n/ᾱ ≫ 1, so that the two logarithms in
the B term depend only weakly on β̄ . As a result, we find
that near the optimum the velocity for the primary process
obeys

Γβ
∝∼ (1− β̄ )β̄ (14)

which is maximised for

β̄
∗ ≈ 1/2 (15)

. Hence, to the level of approximation considered here, the
optimal input for the primary process can be treated as
independent of the system’s parameters. The approximate
independence of the optimal β̄ was verified via stochastic
Fisher-Wright type simulations of the model (Fig. 3).

Next, we consider the input for the mutagenic process, ᾱ .
Noting that, with the exception of the G term, expression (13)
depends on ᾱ only through the ratio of selective pressures

w, we turn our attention to the equivalent problem of finding
the optimal value for this parameter. This will give us an
indication of how strong the mutagenic pressure should be set
relative to the pressure of the desirable adaptation process β .
Differentiating (13) with respect to w and maintaining only
leading order terms, we get that the optimal w approximately
solves:

2−2β̄
∗w− β̄

∗w ln
(

h
w

)
−mw3

(
sα

sβ

)(
h
w

)w sα
s
β

ln2
(

h
w

)
= 0

(16)
When sα ≤ sβ (i.e. when the nominal selection coefficient for
the mutagenic process is smaller or comparable in magnitude
to the one for the main process), the above equation is
dominated by the first two terms near the optimum, which
we expect to find in the region where w < 1. Neglecting this
contribution, we find that the solution to the resulting tran-
scendental equation can be given in terms of the Lambert-W
function, with the optimal ratio w∗ being approximately:

w∗ =
ᾱ∗

β̄ ∗ ≈ e2n× e
W−1

(
− 2

β̄∗e2n

)
(17)

ᾱ
∗ ≈e2h

2
× eW−1

(
− 4

e2h

)
(18)

where W−1(z) denotes the −1 branch of the Lambert W-
function the second approximation follows by substituting
in our previous result β̄ ∗ ≈ 1/2. Hence, in this regime, the
optimal input of the mutagenic process depends solely on the
properties of the main adaptation process, showing a weak,
negative dependence on h =

sβ

bUβ
(Fig. 3). For sα > sβ , the

interference term in equation (16) is no longer negligible
even at the optimum, and the above approximation ceases
to hold. In this parameter regime, numerical experiments
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Fig. 5. Adaptation to UV stress for three independent E. coli populations in the Chi.Bio bioreactor platform. In each experiment, the UV irradiation
intensity is modulated by a PI controller (each with different tuning) with the goal of maintaining the growth of the culture at the desired setpoint. To
account for the fact that adaptation of microbial populations typically proceeds multiplicatively with respect to the absolute stressor level, the output of the
controller was exponentiated. Left: UV (285nm) input provided by each controller, measured relative to the maximum deliverable irradiation power. Right:
measured growth rate from each reactor, showing different variable performance among controllers in maintaining the setpoint. The control set-point is set
to 1/3 of the average observed initial growth-rate (≈ 1.5 h−1)

show a fast decrease of the optimal mutagenic input profile,
which intuitively is required to dominate the increasing
competitiveness of α-type mutations in the race to fixation
with the β -type ones.

Following the above analysis we have derived (approxi-
mate) expressions for optimal values of β̄ ∗ and ᾱ∗ which
if achieved would (in principle) maximally accelerate the
accumulation of mutations adapting the population to stressor
β̄ ; this is illustrated by simulations for varying control
parameters in Fig. 4.

III. DISCUSSION
The ever-increasing availability and accessibility of labo-

ratory automation has opened a range of opportunities for
improvements in the field of laboratory evolution. Among
these, the automated control of selective pressure has been
experimentally validated as a powerful way of accelerating
adaptation in continuously-cultured microbial populations
[10, 11]. In these experiments, an exponentially growing
population is kept at near-constant size by continuous di-
lution and its growth rate measured throughout. Using an
appropriately designed feedback controller, the growth envi-
ronment is then dynamically modulated to maintain growth
at a constant fraction of its uninhibited value, resulting in a
sustained selective pressure driving the adaptation process.
In this paper, we took initial steps to develop the theory
and control approach necessary to derive an optimal value
for this inhibition setpoint by considering a simple model
of mutation-fixation dynamics in the the presence of tun-
able selective strength. We generalised our discussion by
considering the scenario where multiple, coupled adaptive
processes operate in the same experiment.

If only one adaptive process is present (which corresponds
to the limiting case of Uα = 0 or ᾱ = 0 in our analysis),
we find that the model admits an optimal growth inhibition
setpoint (corresponding to 1− β̄ ) which, for the parameter
range investigated here, remains approximately constant at
half of the uninhibited growth rate of the populations. To
begin exploring this finding in an experimental setting, we
adapted three E. coli populations to UV stress in the Chi.Bio

bioreactor platform [4], each with a differently tuned PI
controller trying to maintain its growth rate at ≈ 1/3 (i.e. just
below half) of its base-line growth rate (that observed in the
absence of any selective pressure). This is shown in Fig. 5.
We found that adaption proceeded faster (as measured by
the time taken for the population to tolerate the maximum
deliverable UV input level) as the controller was tuned to
better maintain the setpoint, suggesting promising future
validation experiments in this direction.

When a mutagenic process with toxicity is added to our
system (i.e. input ᾱ), we find that gains in the adaptation
rate of the primary process can be obtained by increasing the
mutagenic input, up to an optimal value. Past this optimum,
interference from mutants tolerant to the mutagenic source
becomes dominant and adaptation in the primary direction
rapidly slows down. For this process, the optimum level de-
pends on the parameters of the model. However, for a range
of parameter values of experimental interest, we found this
dependence to be rather weak, suggesting that, in practice,
an appropriate value can be found even if the parameters of
the evolution process are not known or measurable.

Intuitively, the diminishing returns observed through in-
creasing ᾱ to boost Uβ are expected - the benefit of increas-
ing ᾱ is limited due to the weak logarithmic dependence on
mutation rate (i.e. in Equation (1)) when populations are in a
regime where mutations are abundant (i.e. NUb ≫ 1), as this
regime is characterised by processes that are already being
saturated due to competition between different co-existing
lineages. Future work will investigate other regimes of this
process; for example, the case in which process β is initially
in the Strong-Selection-Weak-Mutation regime characterised
by the more forgiving (with regard to mutation rate depen-
dence) adaptive velocity NUbs2. Further, by extending these
results to the travelling-wave frameworks in which mutation
sizes (s) are drawn from a continuous distribution [9] it
will be possible to determine optimal control policies that
additionally bias a mutation-selection process toward fixation
of mutations of specific size range/s.
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