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Abstract
Directed evolution is a method for engineering biological systems or components, such as pro-
teins, wherein desired traits are optimised through iterative rounds of mutagenesis and selection of
fit variants. The process of protein directed evolution can be envisaged as navigation over high-
dimensional landscapes with numerous local maxima, mapping every possible variant of a protein
to its fitness. The performance of any strategy in navigating such a landscape is dependent on
several parameters, including its ruggedness. However, this information is generally unavailable
at the outset of an experiment, and cannot be computed using analytical methods. Here we pro-
pose a learning-based method for estimating landscape ruggedness from a mutating population,
using only population average performance data. This method uses a short period of exploration
at the beginning of an experiment to predict the ruggedness, subsequently guiding the choice of
high-performing parameters for directed evolution control. We then simulate this approach on two
real-world protein fitness landscapes, demonstrating an improvement upon the performance of stan-
dard strategies, particularly on rugged landscapes. In addition to improving the overall outcomes of
directed evolution, this method has the advantage of being readily deployable in laboratory settings,
even in configurations that exclusively capture average population measures. Given the rapidly ex-
panding application space of engineered proteins, the products of improved directed evolution are
relevant in medicine, agriculture and manufacturing.
Keywords: Protein engineering, directed evolution, machine learning.

1. Introduction

Proteins are fundamental biological components that perform various functions within living organ-
isms. Proteins are variable-length chains of sub-units known as amino acids, for which there are
20 different types. The length and sequence of amino acids in each protein is dictated by a gene,
which is composed of DNA. In an ideal world, new proteins could be engineered by de novo protein
design (Jumper et al., 2021; Baek et al., 2021), which aims at understanding how the sequence of
amino acids maps to structure and function of the protein. However, due to the huge combinatorial
possibilities (20N for a protein of length N ), de novo protein design remains difficult, even with re-
cent advances in computing power and deep learning methods (Dauparas et al., 2022; Ferruz et al.,
2022; Singer et al., 2022; Anishchenko et al., 2021; Wicky et al., 2022).

In contrast, directed evolution is a process by which biological components, such as proteins,
are engineered and improved through iterative rounds of selection and mutagenesis, emulating the
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natural evolution process (Arnold, 1998). Directed evolution has had many successful applications,
including the development of drugs (Nixon et al., 2014) and biofuels (Heater et al., 2019). The prob-
lem of directed evolution can be interpreted as navigation over a protein fitness landscape (Wright,
1932). Fitness landscapes are high-dimensional structures in which the sequence of the protein rep-
resents a coordinate that maps to a fitness value, which, in the context of this work, is defined as the
property the directed evolutionary process aims to optimise. Fitness landscapes are known to exhibit
variable degrees of ruggedness, which can create local optima that constrain paths of evolution (Wu
et al., 2016).

The standard approach to directed evolution is to select the best performing variants with each
iteration. However, this approach can be prone to getting trapped in local optima (Carpenter et al.,
2023). In recent years, numerous optimisation methods have been developed, leveraging machine
learning to actively navigate a protein fitness landscape (Wu et al., 2019; Wittmann et al., 2021;
Yang et al., 2019; Frisby and Langmead, 2021; Hu et al., 2023; Fox et al., 2003). Although effec-
tive, these optimisation approaches require sequencing of the entire population of variants with each
iteration. This makes them labour- and resource-intensive, and not applicable to novel continuous
directed evolution methods where DNA sequence data is not generally available during an experi-
ment (Molina et al., 2022). In a previous work, we proposed strategies that can be used to optimise
directed evolution without the need to sequence all variants (James et al., in press). We found,
however, that the performance of each strategy is dependent on the properties of the underlying
landscape, information that is generally not available at the outset of an experiment.

It has previously been shown that neural networks can be used to infer evolutionary parameters,
such as rate of accumulation of beneficial mutations (Avecilla et al., 2022). Statistical models have
also been generated for inferring protein fitness landscape properties from directed evolution trajec-
tories with sequencing information (D’Costa et al., 2023). In this paper, we use a neural network
to estimate properties of a protein fitness landscape without sequencing information. The method
requires measurements of the average fitness from a population mutating away from a starting point,
which is easily implementable in various experimental configurations. Such data can be collected
by mutating a single population of bacteria (e.g. by UV), and recording the average population
fitness value (e.g. fluorescence) at regular intervals. The resulting measurements are input into a
fully connected neural network (FCN), which has been pre-trained on theoretical fitness landscapes
to predict ruggedness. The use of an FCN is required as fitness landscapes represent a highly non-
linear mapping from DNA sequence to protein functions and properties, which cannot be captured
by traditional methods such as linear regression. This estimate is then used to select directed evo-
lution control parameters that are sensitive to the ruggedness, such as identified in our previous
research (James et al., in press). We analyse the prediction accuracy of the FCN with respect to the
number of fitness values provided, and demonstrate that the ruggedness can be reliably estimated,
resulting in a performance increase of directed evolution experiments in highly rugged landscapes.
Finally, we apply our estimation procedure to two real-world landscapes and demonstrate that it can
be used in practical settings, even though trained on theoretical models.

The paper is organized as follows. Section 2 frames directed evolution as a control problem. In
Section 3, the proposed method for parameter inference is developed. The paper is concluded by
evaluating the proposed method on empirical landscapes.
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Figure 1: Block diagrams for directed evolution in closed-loop and open-loop configurations.

2. Problem Formulation

Directed evolution can be represented by the feedback loop shown in Fig. 1a, which includes mea-
surement noise. Let Pk =

[
p1k . . . pnk

]T ∈ Pn denote the n members of the evolved population
at iteration k ∈ N, F : P 7→ R the fitness function, S : Rn 7→ {0, 1}n×n the selection process, and
M : P 7→ P the mutagenesis process. For a gene of N loci, each with A possible alleles, P rep-
resents a discrete sequence space with AN different sequences, A ∈ N+. The function F measures
the performance of a population member and has multiple local optima in general. The selection
process takes F (Pk), where F is applied element-wise, as inputs, and outputs a selection matrix
S(·) with exactly one 1 per row, so that the selected variants are obtained from S(F (Pk))Pk. Note
that the sequences are not observed directly in practice, only their fitnesses F (Pk). The function M
is modelled as a stochastic function that changes each element of pik with probability θ and leaves it
unchanged with probability 1− θ, so that the number of mutations approximately follows a Poisson
distribution with mean Nθ.

With these definitions, the process from Fig. 1 can be modelled as

Pk+1 = M (S (F (Pk) + nk)Pk) , (1)

where nk ∈ Rn refers to the noise, and the functions F (·) and M(·) are applied element-wise.
For the remainder of the paper, the effect of noise is ignored. The aim of directed evolution is to
maximise the maximum fitness of the population, i.e.

max
i=1,...,n

F (piH), (2)

where H ∈ N+ is the fixed duration of the experiment. Because F lacks strong structure in general,
M is a stochastic function, and the sequences pik are not directly observed, problem (2) cannot be
solved using standard optimisation techniques.

The standard approach to selection in directed evolution is to just choose the fittest variants in
each generation. This approach is prone to getting trapped in local optima, particularly in rugged
landscapes (Carpenter et al., 2023). In order to reduce this propensity, in a previous work we pro-
posed an alternative function for selection shown in Fig. 2a (James et al., in press). The selection
function is defined by two parameters: a threshold fitness percentile, t ∈ [0, 1], above which variants
are always selected, and a base chance of selection, b ∈ [0, 1], for variants with lower fitness per-
centiles. The expected fraction of cells f selected at each iteration is represented by the shaded area
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Figure 2: Stochastic selection functions (with t = (1−f)/(1−b) and f = 0.25) and corresponding
best-performing base chances on the NK landscape (adapted from (James et al., in press)). Figure
(b) also shows the estimated K/N for the GB1 and ParD3 landscapes using the method from Sec-
tion 3.

in Fig. 2a and given by f := 1− t(1− b). Throughout the paper it is assumed that f = 0.25 (James
et al., in press), so that for a given b ∈ [0, f ], t = (1− f)/(1− b). This selection function trades off
exploration with exploitation, and is therefore less prone to getting trapped in local optima than the
aforementioned standard approach. Depending on the properties of fitness landscape, it has been
shown that the choice of b significantly affects the outcome of the experiment (James et al., in press).
While low base chances (greedy selection) perform well on landscapes with few maxima, high base
chances benefit the outcome of the experiment on rugged landscapes. This is captured in Fig. 2b,
which shows the best-performing b as a function of the gene length N and a ruggedness measure
K/N on the theoretical NK landscape (Section 3.1) for a fixed number of iterations H = 100. For
heavily rugged landscapes (K/N ≈ 1), high base chances are favourable, whereas for less rugged
landscapes (K/N ≪ 1), low base chances are favourable.

3. Estimating Landscape Ruggedness

The fitness landscapes of biological entities evolved in real-world experiments are not known a pri-
ori. The question arises whether landscape properties can be inferred from fitness measurements
taken before the start of the experiment in order to choose appropriate control parameters for selec-
tion and mutagenesis. To achieve this, a method for inferring a ruggedness measure of the landscape
is developed, which is in turn used to select the parameter b. Given that F can be arbitrarily com-
plex, an FCN is trained to estimate the ruggedness from fitness values measured in the open-loop
configuration from Fig. 1b, where the selection procedure has been omitted. First, information on
the landscape is collected by repeatedly mutating the population and measuring the average fitness.
Second, these measurements are preprocessed and fed into the trained FCN, which outputs an es-
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timate of the ruggedness. Finally, the ruggedness estimate is used to choose an appropriate base
chance from the look-up table in Fig. 2b.

3.1. NK Landscapes

The successful training of the FCN hinges on the availability of data. At present, there exist few
empirical data sets that map sequence space to fitness measurements (Section 4). These empirical
data sets are therefore not in sufficient quantity for training the FCN, nor are they accompanied by a
clear definition of ruggedness for training. This problem can be circumvented by using theoretical
models of fitness landscapes, such as Fisher’s geometric model (Tenaillon, 2014; Fisher, 1931), the
holey landscape model (Gavrilets, 1997), the multilinear model (Hansen and Wagner, 2001), the
Rough Mount Fuji model (Neidhart et al., 2014) and the NK model (Kauffman and Levin, 1987;
Kauffman and Weinberger, 1989), which is used here on account of its tuneable ruggedness and
implementation of epistasis (interaction between sub-units, which is prevalent in a protein context).

In the NK model, each gene is represented by a sequence of length N . Every site interacts with
K other sites in the gene, influencing the resulting fitness. The number of interactions, determined
by K, is what allows ruggedness to be tuned. When K = 0, the landscape is linear and has a single
peak. The other extreme, K = N − 1, is maximally rugged, with all fitness values independent
from one another. Values of K between the two interpolate between these two extremes. Note
that, even though the underlying generation process is known, finding the global optimum of an
NK-landscape is an NP-hard problem for K > 1 (Wright et al., 2000).

3.2. Training the Fully Connected Neural Network

To estimate the ruggedness, the population is mutated for G generations in the open-loop configu-
ration from Fig. 1b, so that Pk+1 = M(Pk) = M (k+1)(P0). To account for numerical differences
between the landscapes, the measurements F (pik) are normalised by the observed mean, µ̄, as xik :=

(F (pik)− µ̄)/σ̄, where µ̄ =
∑G

k=1

∑n
i=1 F (pik)/(Gn) and σ̄2 =

∑G
k=1

∑n
i=1(F (pik)− µ̄)2/(Gn).

The mean, µk, of the population fitness of generation k are then computed as µk :=
∑n

i=1 x
i
k/n,

from which the features provided to the FCN are computed as

u :=
[
µ1 . . . µG

]T ∈ RG. (3)

The choice (3) is designed to be as simple as possible, while capturing factors relevant to rugged-
ness estimation. Fig. 3a shows two example trajectories for a smooth (K/N = 0.2) and a rugged
(K/N = 0.8) landscape with N = 100, Nθ = 0.5, and with n = 50 (solid) and n = 4000 (dotted).
It can be seen that both trajectories converge to the overall mean fitness, F̄ , of their corresponding
landscape, but at different speeds. For a rugged landscape, µk converges more quickly to F̄ than for
a smooth landscape. This is formalised for the NK landscape in the following proposition:

Proposition 1 Let F : AN → R be an NK landscape, and let pik be a single cell mutating at rate
θ per generation. Then:

E
[
F (pik)|F (pi0)

]
− F̄ ≈ e−θkK(F (pi0)− F̄ )

Proof See Appendix A.
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Figure 3: Example features (N = 100 and n = 50) and performance of the ruggedness estimator
evaluated on a test set with 1.2× 106 datapoints.

In particular for large n, µk can be interpreted as an population estimate of E
[
F (pik)|F (pi0)

]
, so

that µk → E
[
F (pik)|F (pi0)

]
as n → ∞. As K is a measure of ruggedness, this implies that the

more rugged the landscape, the more quickly µk converges to F̄ . Note that the approximation from
Proposition 1 coincides with the dotted line from Fig. 3a, which corresponds to (3) with n = 4000.

In order to infer K/N from (3), an FCN, ϕfcn(u) ≈ E [K/N | u], is trained on a dataset of
1.2 × 106 (u,K/N) pairs generated from a distribution of NK landscapes. The FCN has two
hidden layers of size 128 and is trained using gradient descent. The main computational cost is
data generation, which takes 10min using an NVIDIA A40, whereas the training of the FCN takes
2min. The estimation error of ϕfcn(u) obtained on a test set with 1.2 × 106 datapoints is shown
in Fig. 3b for different values of K/N and G = 50. It can be seen that ϕfcn(u) performs well for
extreme values of K/N , but worse for intermediary values.

The accuracy of ϕfcn(u) is further analysed in Fig. 3c for 5 ≤ G ≤ 120 and mutation rates
0.1 ≤ Nθ ≤ 1.9, which shows the root mean square error (RMSE) averaged over the values of
K/N marked in Fig. 3b. Fig. 3c shows that the accuracy increases as G does, but plateaus quickly,
which is related to the convergence properties of µk shown in Fig. 3a. Fig. 3c also shows that a
lower mutation rate requires a larger G for a high accuracy.

4. Translation to Empirical Landscapes

The performance of ϕfcn(u) is tested on two different empirical landscapes. Empirical landscapes
are experimental data sets describing the fitness of all possible variants of a protein region. Mea-
surement of such fitness landscapes can be a highly resource-intensive task, as they increase in size
exponentially with the addition of each amino acid position. At present, there is a limited number of
empirical protein fitness landscapes, with the largest combinatorially complete example not exceed-
ing four amino acid positions (Weinreich et al., 2006; Khan et al., 2011; Chou et al., 2014; Bank
et al., 2016; Wu et al., 2016; Lite et al., 2020; Papkou et al., 2023). There is a necessity, therefore, to
train ϕfcn(u) using theoretical NK landscapes, and to reserve the empirical landscapes for testing.
NK landscapes are a simplistic representation of true protein fitness landscapes, given the fact that
K is a fixed constant and not variable over the protein, and that the distribution of fitness values is
normal, as opposed to being heavily skewed towards zero. Despite this, it is found that the model
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fares well when applied to real fitness landscapes, and may improve with more tailored theoretical
fitness landscapes.

The first empirical fitness landscape the ruggedness estimator is tested on is that of a four amino
acid region of GB1 (204 combinations) (Wu et al., 2016). GB1 is an antibody-binding protein
isolated from Streptococcal bacteria. The fitness values of this landscape correspond to how well
each GB1 variant binds to the antibody. The second empirical landscape tested on is that of a three
amino acid region of an antitoxin protein known as ParD3 (203 combinations) (Lite et al., 2020).
Fitness values in this landscape correspond to strength of binding to the toxin ParE2.

Ruggedness (K/N ) estimation is performed on GB1 and ParD3 landscapes using a mutating
population of size n = 50, mutating from the natural (wildtype) sequence over G = 50 generations,
with a mutation rate Nθ = 0.5. As the process underlying the ruggedness estimation is stochastic,
ϕfcn(u) is evaluated 100 times. The FCN ϕfcn(u) estimated K/N values of 0.5±0.11 and 0.28±0.04
on GB1 and ParD3, respectively (see Fig. 2b). The estimated K/N values are combined with N
to look up an estimate for optimal base chance. Here, N corresponds to the length of the DNA
sequence for the protein mutating region, so that N = 12 for GB1 and N = 9 for ParD3. The
inferred base chance values are bfcn = 0.157 on GB1, and bfcn = 0.156 on ParD3.

Finally, directed evolution simulations are performed on GB1 and ParD3 using the selected
base chance values and compared in Fig. 4. In each case, the simulation is compared to the standard
approach to directed evolution, which is to select only the top fraction of variants each generation
(b = 0), as well as to the “optimal” base chance bopt obtained in the same way Fig. 2b was obtained.
On GB1, a 5.6% improvement in fitness after 100 generations is observed. As a landscape that
is predicted to be more rugged, it is proposed that this improvement is due to the increase in b,
reducing the propensity to get trapped in local optima. On closer inspection, this was confirmed
as the mean fitness of the new strategy corresponds to between the highest and second highest
peak on the landscape, whereas the mean fitness of the standard approach corresponds to between
the second and third highest peak on the landscape. On ParD3, all strategies achieved the global
maximum (1.023) within ∼10 generations. This supports the estimated lower K/N value (0.28),
which suggests that ParD3 is a less rugged landscape and thus easier to navigate. In each case,
the strategy that uses bfcn either matches or out-performs the standard approach, and matches the
strategy that uses bopt.

5. Conclusion

In this paper, it was shown that the ruggedness of protein fitness landscapes can be estimated from
measured average fitness values, µk. The estimated ruggedness parameter can be used to select
parameters for control of directed evolution. To estimate the ruggedness parameter, an FCN was
trained on a range of NK landscapes with known ruggedness parameters. The performance of the
FCN-selected parameters were tested on the GB1 and ParD3 empirical landscapes, and compared
to a fixed parameter (standard) approach to directed evolution. It was shown that the proposed
method leads to improvements on the more rugged GB1 landscape, and matches the already high
performance of the standard approach on ParD3. In the absence of prior knowledge regarding the
shape of a fitness (or other) landscape, the proposed method allows one to determine a tailored
strategy that improves the likelihood of a desired outcome, contrasting fixed-parameter approaches
that are prone to getting trapped in local optima.
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Figure 4: Mean fitness and standard deviation for simulated directed evolution experiments with
population size n = 300 averaged over 100 different starting points.

The assumption underlying the ruggedness estimation was that µ0 significantly differs from the
overall mean fitness, F̄ , allowing the features to capture a trend as µk → F̄ . When µ0 ≈ F̄ , the
features observed in smooth and rugged landscapes do not differ, in which case the FCN performs
worse. Although in practice it is unlikely that µ0 ≈ F̄ for larger N , future research could address
this limitation, e.g., by adding higher moments of the fitness distribution to the features.

We believe that the ruggedness estimation can be improved by increasing the quality of training
data, e.g., with a fitness landscape model more tailored to the case of protein evolution than the NK
landscapes. Future research could develop a theoretical fitness landscape model that incorporates
the specific properties of proteins and their evolution. This method could be validated in real-
world directed evolution experiments, which commonly feature much larger values of N than the
empirical landscapes used in this paper. Additionally, future research could combine the ruggedness
estimation with the base chance look-up to obtain an end-to-end solution for parameter selection.

Although this method has been applied to the literal case of directed evolution, it could also
apply to other non-linear, non-convex optimisation problems, e.g., for controlling the parameters of
genetic algorithms.

Appendix A.

In order to prove Proposition 1, several intermediary definitions and results are provided. First, the
random process corresponding to a mutating gene is defined. Note that the more general continuous
time setting is used in the following.

Definition 2 (Randomly drifting locus) Let Xi
t ∈ A be a random process. Xi

t is referred to as a
randomly drifting locus with A alleles, and mutation rate α if it is a continuous-time Markov chain,
with an transition rate of α

A−1 between any two non-identical states.

Lemma 3 If Xi
t is a randomly drifting locus with A alleles, and mutation rate α, then, P(Xi

0 =

Xi
t) =

1
A + (1− 1

A)e
−α( A

A−1
)t.
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Proof All alleles not equal to Xi
0 are symmetric. Hence we may consider them as a single collective

state, and by symmetry the chance that Xi
t will be any specific allele given Xi

t ̸= Xi
0 will be 1

A−1
by symmetry. The result from Lemma 3 may be obtained from solving the following differential
equation:

dP(Xi
0 = Xi

t)

dt
= −αP(Xi

0 = Xi
t) +

α

A− 1
(1− P(Xi

0 = Xi
t)).

The following definition extends Definition 2 to genotype level.

Definition 4 (Randomly drifting gene) Let Xt =
[
X1

t X2
t . . . XN

t

]
∈ AN be a random

process. If all of the processes Xi
t are statistically independent, randomly drifting loci with A

alleles and mutation rate α, then Xt is referred to as a randomly drifting gene on N loci, A alleles,
and mutation rate α. This may be written shorthand as Xt ∼ D(N,A, α)

Lemma 5 Any subset of the loci of a randomly drifting gene is also a randomly drifting gene.

Proof This follows from Definition 4.

Lemma 6 If Xt ∼ D(N,A, α), then P(Xt = X0) ≈ e−αNt.

Proof P(Xt = X0) = P(X0
t = X0

0 )
N , by independence of the loci. Using Lemma 3 and approxi-

mating ex ≈ 1 + x, we obtain:

P(X0
t = X0

0 ) =
1

A
+ (1− 1

A
)e−α( A

A−1
)t ≈ 1

A
+ (1− 1

A
)(1− α(

A

A− 1
)t) = 1− αt

Again approximating ex ≈ 1 + x yields the desired result for P(Xt = X0) as

P(Xt = X0) = P(X0
t = X0

0 )
N ≈ (1− αt)N ≈ e−αNt.

Next, the conditions that the fitness landscapes must satisfy for Proposition 1 to hold are formally
defined.

Definition 7 (K-loci landscape) We say F : AN → R is a K-loci landscape if ∃Φν : AK →
R∀ν ∈ PK(N) such that ∀X =

[
X1 X2 . . . XN

]
∈ AN :

F (X) =
∑

ν∈PK(N)

Φν(X[ν])

where PK(N) = {ν ⊆ {1 . . . N} | K = |ν|}, and X[ν] ∈ AK is shorthand for
[
Xνi Xνi . . . XνK

]
,

where νi is shorthand for element i of ν (with the standard ordering).

Definition 8 (Isotropic K-loci landscape) Let F : AN → R be a distribution over K-loci land-
scapes. We say F is isotropic if, ∀ν1, ν2 ∈ PK(N) and ∀X1, X2 ∈ AN :
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1. Φν1(X1[ν1]) and Φν2(X2[ν2]) are independent unless ν1 = ν2 and X1[ν1] = X2[ν2].

2. Φν1(X1[ν1]) and Φν1(X2[ν1]) have the same distribution.

Furthermore, we write Φ̄ν1 = E [Φν1(X1[ν1])] = E [Φν1(X2[ν1])], and F̄ = E [F (X1)] = E [F (X2)] =∑
ν∈PK(N) Φ̄

ν

Lemma 9 All NK landscapes are isotropic K-loci landscapes.

Proof We provide a proof by construction. Let κ = κ1, κ2 . . . κN be the N interaction loci in an
NK landscape. Write U(0, 1, k) for the Irwin–Hall distribution, which is the sum of k independent
standard uniform distributions. Let kν = |{i | κi = ν}| , for X ∈ AN , we may set Φν(X[ν]) ∼
U(0, 1, kν). This induces an NK landscape, whilst also trivially satisfying both requirements for
an isotropic K-loci landscape.

Finally, the main theoretical result is provided:

Proposition 10 Suppose Xt ∼ D(N,A, α), and F : AN → R is an Isotropic K-loci landscape.
Then, E [F (Xt) | F (X0)] ≈ e−αKtF0 + (1− e−αKt)F̄ .

Proof We write Ft = F (Xt) as shorthand. Using Definition 8, we obtain:

E [Ft | F0] = E

 ∑
ν∈PK(N)

Φν(Xt[ν])

∣∣∣∣∣∣F0

 =
∑

ν∈PK(N)

E [Φν(Xt[ν]) | F0] . (4)

Focusing on a single ν, by Lemma 5, Xt[ν] ∼ D(K,A,α), allowing Lemma 6 to be used:

E [Φν(Xt[ν]) | F0] = E [Φν(Xt[ν]) | F0 ∩Xt[ν] = X0[ν]]P(Xt[ν] = X0[ν])

+ E [Φν(Xt[ν]) | F0 ∩Xt[ν] ̸= X0[ν]]P(Xt[ν] ̸= X0[ν])

≈ E [Φν(X0[ν]) | F0] e
−αKt + Φ̄ν(1− e−αKt)

(5)

Substituting (5) into the right-hand side of (4) yields

E [Ft|F0] ≈
∑

ν∈PK(N)

E [Φν(X0[ν]) | F0] e
−αKt + Φ̄ν(1− e−αKt),

= e−αKtE

 ∑
ν∈PK(N)

Φν(X0[ν])

∣∣∣∣∣∣F0

+ (1− e−αKt)
∑

ν∈PK(N)

Φ̄ν ,

= e−αKtF0 + (1− e−αKt)F̄ ,

(6)

which proves Proposition 10. Proposition 1 follows from Lemma 9 and discretising (6).
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