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Abstract

Directed evolution can enable engineering of biological systems with minimal knowledge
of their underlying sequence-to-function relationships. A typical directed evolution
process consists of iterative rounds of mutagenesis and selection that are designed to
steer changes in a biological system (e.g. a protein) towards some functional goal. Much
work has been done, particularly leveraging advancements in machine learning, to
optimise the process of directed evolution. Many of these methods, however, require
DNA sequencing and synthesis, making them resource-intensive and incompatible with
developments in targeted in vivo mutagenesis. Operating within the experimental
constraints of established sorting-based directed evolution techniques (e.g.
Fluorescence-Activated Cell Sorting, FACS), we explore approaches for optimisation of
directed evolution that do not require sequencing information. We then expand our
methods to the context of emerging experimental techniques in directed evolution,
which allow for single-cell selection based on fitness objectives defined from any
combination measurable traits. Finally, we validate the developed selection strategies on
the GB1 empirical landscape, demonstrating that they can lead to up to a 7.5 fold
increase in the probability of attaining the global fitness peak.

Author summary

The standard approach to sorting-based selection in directed evolution is to take
forward only the top-performing variants from each generation of a single population.
In this work, we begin to explore alternative selection strategies within a simulated
directed evolution framework. We propose “selection functions”, which allow us to tune
the balance of exploration and exploitation of a fitness landscape, and we demonstrate
that splitting a population into sub-populations can improve both the likelihood and
magnitude of a successful outcome. We also propose strategies to leverage emerging
selection methods that can implement single-cell selection based on any combination of
measurable traits. We validate our optimised directed evolution approaches on the
empirical fitness landscape of the GB1 immunoglobulin protein.

Introduction 1

Engineered biological systems hold immense potential for application across industries 2

including medicine, manufacturing, and agriculture [1–3]. In recent decades, protein 3

engineering in particular has demonstrated the potential of natural biological elements 4

to be adapted for new functionalities. Advancements in computational methods are 5

bringing de novo protein engineering closer to reality [4–8]. However, such approaches 6

remain limited by our developing understanding of protein sequence-to-function 7

relationships. As one means to circumvent the need for such detailed prior knowledge, a 8

range of techniques termed “directed evolution” have been developed [9]. Directed 9

evolution techniques have delivered products across a range of applications, from cancer 10

and autoimmune disorder drugs [10] to enzymes for converting cooking oil into bio 11

diesel [11]. 12

13

In a process that mimics nature, directed evolution consists of iteratively introducing 14

random variation by mutagenesis, followed by selection biased toward user-defined 15

desirable variants. Selection can be achieved broadly via two families of approaches; 16

first, those that couple a trait-of-interest to growth of a host organism [12,13], or 17

second, those that couple a trait to a measurable output (e.g. expression of fluorescent 18
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proteins) and then actively sort cells with desirable output values for future mutagenesis 19

and propagation [14]. Each approach has different strengths and weaknesses. 20

Growth-coupled selection utilises (comparatively) straightforward growth-based assays 21

but requires engineering of a trait-to-growth coupling, which is both challenging and can 22

lead to “cheating” behaviour [15]. Meanwhile, sorting-based methods only require a 23

trait be measurable (i.e. they do not require coupling to growth), but in turn necessitate 24

more complex experimental approaches to implement the selection for the measured 25

winners (e.g. FACS [14]). In contrast to FACS, which takes only a single time-point 26

measurement from each cell, emerging selection techniques leverage microfluidics to 27

observe cells over long time periods prior to sorting [16,17]. This produces increasingly 28

high-dimensional information on which to sort cells. Our work focuses on these 29

emerging sorting-based methods due to their increased level of control, and consequently 30

not all strategies we propose are suitable for growth-coupled directed evolution. This is 31

a timely challenge, as new methods for single-cell selection pose novel theoretical 32

questions - which our work aims to answer - regarding how their capabilities can be 33

optimally implemented and exploited. 34

35

As a trait-of-interest undergoes directed evolution, the process can be imagined as 36

navigation across high-dimensional “fitness landscapes” [18]. Fitness landscapes map 37

each genetic sequence to a measure of fitness, with “fitness” being performance for a 38

desired function - the goal of directed evolution is to find the highest peaks on that 39

landscape. Fitness landscapes are known to exhibit variable degrees of ruggedness, 40

which can create local optima that constrain paths of evolution [19,20]. Standard 41

practice in directed evolution is to take forward and mutate only the top fraction of 42

variants with each iteration [21, 22]. This “greedy” approach is prone to getting trapped 43

in local optima, particularly in rugged landscapes [23]. With the aid of computational 44

methods, however, it is possible to navigate protein fitness landscapes in a more active 45

way. One of the earliest examples of such a method is ProSAR, which uses a statistical 46

algorithm to identify specific residues that are correlated with high fitness. Each new 47

generation of variants is designed to combine residues that were predicted to contribute 48

most to fitness [24]. Methods that predict the fitness effects of mutations in this way 49

are now able to accommodate machine learning [25–27] and Bayesian optimisation 50

approaches [28,29]. Such methods have been built upon by not only utilising the 51

fitnesses of the sequences in isolation, but also time-series mutation data acquired during 52

a directed evolution experiment [30]. The vast majority of these methods, however, are 53

based upon the requirement for sequencing information from each generation. This 54

means they are somewhat resource- and labour-intensive, and are not suited to 55

maximising the benefits from in vivo mutagenesis methods for directed evolution [31]. 56

57

Here we explore how, in the absence of sequencing data, one can maximise the 58

likelihood of a given directed evolution process finding global (or at least very strong 59

local) optima on a fitness landscape. Examples of previous work to optimise directed 60

evolution without sequencing information include strategies such as alternating between 61

“on” and “off” states of selection [32]. This approach offers an opportunity for 62

populations to traverse fitness valleys and avoid getting trapped at local optima. Here, 63

we approach the same challenge from several new angles. First, probability of selection 64

is applied as a parameterised function of fitness that can be used to tune the balance 65

exploration and exploitation on a fitness landscape. Second, we investigate the benefits 66

that can be gained by splitting a population into sub-populations and allowing their 67

trajectories to diverge. Finally, we explore the novel capabilities of the aforementioned 68

emerging selection methods [16, 17], which in particular enable effective optimisation of 69

multiple properties in parallel. We demonstrate the performance of our optimisation 70
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Fig 1. Schematic of the directed evolution simulation cycle The model of
directed evolution performs iterative round of mutation, selection and proliferation.
Genes are represented by one-dimensional arrays. The fitness of each gene can be
generated by feeding the array into a fitness landscape model. The probability of
selection is determined by feeding the resulting fitness into a selection function.
Proliferation is carried out by sampling with even probability up to a fixed population
size. Mutation is carried out by introducing random changes to the arrays. For a more
detailed description of the computational pipeline, see Methods: Model. Strategies
explored using the model include selection functions, population splitting and selection
across multiple properties

approaches by simulating directed evolution on the GB1 empirical landscape [19]. 71

Results 72

In order to test selection strategies, a computational model was implemented to mimic 73

the process of directed evolution. Genes in the model are represented by 74

one-dimensional arrays, which iterate through rounds of mutation and selection (Fig. 1, 75

Methods: Model). In the selection process, the fitness of each gene is calculated using 76

an empirical landscape [19] or an NK model [33, 34]; see Methods. Empirical landscapes 77

are combinatorially complete fitness measurements for all variants of a protein (or 78

protein region). NK models are computationally generated fitness landscapes that are 79

made necessary by the limited availability of empirical landscapes. In both NK and 80

empirical landscape implementations, the gene sequence can be taken as input and the 81

corresponding fitness value is given as output. As outlined above, the approaches 82

explored with the model are possible in contexts where one actively selects “winning” 83

variants to enrich (e.g. FACS), as opposed to growth-coupled directed evolution, which 84

does not offer this type of control. 85
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Fig 2. Investigating the performance of selection functions in directed
evolution A: Selection functions define probability of selection as a function of fitness
(Methods : Selection Functions). The selection function used here is determined by two
parameters: threshold and base chance. Selection functions were normalised to select
20% of the population. B: Optimal base chance values on varying NK landscapes.
Dependence of trajectory end-point fitness on C: mutation rate, and D: population size.
“Normalised fitness” is maximum fitness across the population at the final time point
(averaged over 100 runs) as a fraction of the global maximum on the landscape.
Experiments ran for 300 generations. 0.01 ≤ base chance ≤ 0.19, N = 25, K = 5,
mutations per cell = 0.1, population size = 1000.

Selection functions for tuneable exploration vs exploitation 86

Selection functions are introduced as a means to tune the balance of exploration and 87

exploitation on a fitness landscape. The selection functions proposed here are defined by 88

two parameters: “threshold” and “base chance” (Fig. 2A). The threshold is the fitness 89

percentile above which variants have a 100% chance of selection, otherwise the chance of 90

selection is equal to the base chance (Methods: Selection Functions). In this work, 91

selection functions are normalised to select a constant fraction of variants. In a 92

continuous directed evolution experiment, this ensures that proliferation time remains 93

approximately constant between generations (hence, performance metrics can be 94

considered as improvement in a trait per unit time). Fixing the selected proportion of 95

cells also reduces the parameter space of selection functions to one dimension, as every 96

base chance has only one threshold value corresponding to a fixed proportion of the 97

population being selected. We hypothesise that the base chance parameter will improve 98

directed evolution by allowing a population to escape local optima on the fitness 99

landscape. By selecting some cells unconditionally, they are allowed to accumulate more 100

mutations, potentially allowing them reach higher performing variants via deleterious 101

phenotypes. 102

103

The NK model describes a class of fitness landscape with tuneable 104

ruggedness [33,34] (Methods: NK Landscapes). N describes the number of variable 105
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sites, and K can be thought of as a metric of ruggedness ranging from 0 to N − 1, with 106

high K meaning high ruggedness (i.e. more local optima). Fig. 2B shows the optimal 107

base chance over varying NK landscapes, as estimated via simulation. In particular, Fig. 108

2B shows the optimal base chance increasing with respect to K (ruggedness), and 109

decreasing with respect to N (dimensionality). Given that base chance is hypothesised 110

to help escape local optima, one explanation for this result is that more local optima are 111

found in rugged landscapes, and they are more difficult to escape in low-dimensional 112

landscapes, which offer fewer paths between any two points. For smooth, 113

high-dimensional landscapes the opposite is true, therefore the function that most 114

favours exploitation over exploration (i.e. base chance = 0) is found to be optimal. 115

116

Next, the interaction between base chance and population size was explored. Note 117

that the NK landscape is non-linear, therefore a 1% increase in raw fitness may truly 118

represent a larger underlying improvement, particularly at the high-fitness end of the 119

distribution Fig. 2C shows that base chance can improve performance across a range of 120

population sizes, particularly in large populations. Given that large populations can 121

explore more of the landscape, they are likely to encounter more local optima. The 122

ability for a population to escape a local optimum is dependent on its ability to reach a 123

fitter state via at least one deleterious mutation. Although evolution via deleterious 124

mutations is shown to occur more readily in large populations [35,36], the dynamic is 125

also promoted by base chance, and hence base chance can improve performance. In 126

small populations, the cost of including detrimental variants is greater relative to the 127

potential gain, therefore base chance is less beneficial. 128

129

The performance of the selection functions with varying mutation rates was also 130

investigated (Fig. 2D). When mutation rate is low, higher base chance values perform 131

best and vice versa for high mutation rate. One explanation for this is in the balance of 132

exploration and exploitation. Both base chance and mutation rate aid in escaping local 133

optima by increasing the likelihood of a cell undergoing multiple mutations. Although 134

this benefits exploration, further increases in mutation rate can come at the cost of not 135

effectively exploiting a position on the landscape. For this reason, base chance 136

performance drops off more quickly in a high mutation rate regime. Given that most 137

directed evolution experiments operate in a low mutation rate regime to avoid 138

detrimental side effects [37], base chance could act as a useful tool for promoting 139

landscape exploration. The benefits of such an approach are that implementing a base 140

chance has no direct impact on top-performing variants, whereas increasing mutation 141

rate impacts all cells. 142

143

Population splitting for improved exploration 144

Until now, this work has assumed a single population undergoing directed evolution. 145

However, in practice, one could run multiple, smaller, copies of the same directed 146

evolution experiment by subdividing a population, and take the best outcome across all 147

of them as the final result. Here, this method is referred to as “population splitting”. 148

An example of such a situation is displayed in Fig.3A, where a population of size 500 is 149

split into five equal sub-populations of size 100. In this example experiment population 150

splitting performs better, and Fig. 3D and E demonstrate the consistency of this result 151

across parameter regimes. This may be because in a single, mixed population, mutations 152

will eventually drift to fixation or extinction, therefore the population as a whole 153

remains largely on the same trajectory. If one splits the population, sub-populations are 154

able to drift on separate trajectories without cross-competition, effectively mimicking 155

the process of speciation and increasing landscape exploration [38,39]. 156
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Fig 3. Investigating the effects of population splitting in directed evolution
A: Example of a directed evolution run split into five sub-populations vs a single large
population. Colourbar indicates fitness value. B: Principal components analysis of the
final time point sequences of a split vs non-split population. Hamming distances
between the final timepoint sequences of C: a split population and D: a non-split
population. E: Mean performance of directed evolution with varying total population
and sub-population size. F: Distribution of performance with varying number of
sub-populations (fit to a normal distribution). Experiments ran for 100 generations. N
= 25, K = 5, mutations per cell = 0.1, selection threshold top 5%, as per [21].

157

Principal components analysis (PCA) was used to verify that sub-populations 158

diverge on separate trajectories. The final timepoint gene sequences from the simulation 159

in Fig.3A were collected. PCA was performed on the combined dataset to to reduce the 160

25-dimensional genetic space to just 2 dimensions for visualisation (Fig. 3B). The result 161

shows that each sub-population forms a cluster, and the overall variation of the split 162

population is significantly more than the non-split population. This is further verified in 163

Fig. 3C, which displays that the average normalised Hamming distance between 164

sub-populations (0.44) was far greater than that within sub-populations (0.011, similar 165

to the average Hamming distance of 0.009 measured within the large single population). 166

167

Population splitting can clearly confer a benefit to performance, however there is a 168

trade-off between splitting the population to maximise exploration, and keeping 169

sub-populations large enough to effectively search around their local position on the 170

landscape. Fig.3D summarises the performance of population splitting for different total 171

population sizes, demonstrating that if the (total) population is too small, splitting is 172

instead detrimental to performance. Fig.3E shows the distribution of performance 173

outcomes, over 1000 runs, for splitting a large population into increasingly smaller 174
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Fig 4. Optimisation of multi-dimensional selection A: Demonstration of selection
patterns with double-round (i.e. flow cytometry selection) and single-round selection.
Randomly-generated fitness points normally-distributed around the mean 0 of
phenotypes 1 and 2. B: Directed evolution performance of double-round vs single-round
selection. Performance of weighted selection functions to perform directed evolution
over three properties, with weightings of C: 1:1:1, D: 1:2:3 and E: 3:1:1 respectively.
Experiments ran for 100 generations. N = 25, K = 5, mutations per cell = 0.1,
population size = 1000, selection threshold top 5%, as per [21].

populations. This demonstrates an additional advantage of population splitting, which 175

is that the variance of the final outcome decreases as the number of sub-populations 176

increases. 177

Multi-dimensional selection with simulated novel selection 178

methods 179

Previous sections have operated within the constraints of well-established directed 180

evolution selection methods (e.g. FACS). Emerging methods for selection, however, may 181

offer increased capabilities; notably using microfluidics to observe cells for long time 182

periods prior to selection [16,17]. Not only would long-term observation increase the 183

reliability of readings and allow selection based on complex time-dependent traits, it 184

would also allow for multiple properties (or responses to stimuli) to be measured in a 185

single round of selection. Such multi-dimensional selection is highly applicable in the 186

directed evolution of biosensors, in which one seeks to optimise both specificity and 187

sensitivity [21]. 188

189

The current standard approach to multi-dimensional selection (e.g. in FACS) is to 190

perform sequential rounds of selection, one for each property [21]. This introduces a 191

systematic error with respect to the selection objective, as shown in Fig. 4A. The blue 192

dashed line divides the true best cells from the population (as could be achieved by 193
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Fig 5. Application of selection function and population splitting to the
empirical GB1 landscape A: Performance of an array of base chance values and
sub-population numbers in GB1 directed evolution. B: Distribution of outcomes on GB1
with varying values of base chance (BC) and sub-population numbers (S). Outcomes
from 1000 simulations. GB1 max = 9.91, min = 0, wildtype simulation start = 1
(VDGV), mutation rate = 0.01, population size = 500.

single-round selection), whereas the orange dashed lines represent the cut-offs of a 194

double-round selection setup. Cells that are poor in one property but excel in another 195

are not selected by double-round selection. As a result, the overall performance of 196

single-round selection is higher (Fig. 4B). 197

198

Not only would the described emerging methods improve upon FACS in the simplest 199

case, they would also offer the additional ability to tune the prioritisation of different 200

properties. When selecting on a single property, the fitness value (F ) used to determine 201

selection is simply the value of that property. When selecting on multiple properties, 202

however, the overall fitness value used to determine selection is some combination. 203

Given that most directed evolution experiments have a limited amount of time and/or 204

physical resources, it is crucial to consider how much one prioritises each property in 205

this combination. This prioritisation can be implemented by applying a weight (wi) to 206

the value of each property. So, F = w1f1 + w2f2 + w3f3, where fi is the value of 207

property i. In the simplest case, we allow all weightings to be equal (Fig. 4C). By 208

changing the weightings of the properties we observe proportional gains in the fitness of 209

each property (Fig. 4D and E). 210

Translation to empirical fitness landscapes 211

The preceding results are based on simulations of NK landscapes, which although widely 212

used, may not capture all important properties of real fitness landscapes. In order to 213

test our strategies further, we therefore applied them to the empirical GB1 fitness 214

landscape [19], which exhaustively measures the binding strength of 160,000 variants of 215

the GB1 immunoglobulin protein to IgG-Fc. 216

217

We used this landscape to assess the performance of strategies that employ base 218

chance and/or population splitting. Fig. 5A displays the performance of varying 219

combinations of base chance and splitting. We observed a clear optimum in population 220

splitting in the range of 20 sub-populations, which remains the optimum regardless of 221

the base chance chosen. The trends with respect to base chance are much weaker, and 222

also dependent on the number of sub-populations. In particular the optimal base chance 223

decreases slightly from 0.2 to 0.1 as the number of sub-populations increases. 224

225
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Fig.5B displays the distribution of outcomes from GB1 directed evolution using four 226

different strategies highlighted in Fig.5A (neither splitting nor base chance, each 227

strategy in isolation, and both strategies combined). Of these four methods, the 228

standard approach to directed evolution (employing neither splitting nor base chance) 229

performs the worst, with over 50% of directed evolution runs on GB1 getting trapped at 230

a local optimum (5.8x wildtype fitness). By introducing splitting, that frequency is 231

reduced to less than 15%, and the mode outcome is 8.8x wildtype fitness. As for the 232

fraction of runs which reach the global optimum, it is 10% with splitting, compared to 233

less than 2% using the standard approach. Put another way, the best possible outcome 234

of the experiment becomes 5 times more likely with population splitting. By using both 235

population splitting and base chance, this further increases to 15%, or 7.5 times more 236

likely than the no splitting/base-chance case. 237

238

When deploying single-cell selection techniques in practice, it is not possible to 239

identify the optimal parameters before beginning. However, considering Fig.5A and 240

previous NK landscape results, we hypothesise that the standard approach of no 241

splitting and no base chance may in general significantly under-perform in real-world 242

experiments. Deviating from the standard approach to directed evolution, in particular 243

by population splitting and/or adding a non-zero base chance, may therefore offer 244

benefits even if it is not the absolute optimal strategy. 245

Discussion 246

This study demonstrates that even in the absence of sequencing information, there are 247

approaches that can be used to improve directed evolution outcomes. Such approaches 248

were demonstrated both on simulated NK landscapes, and on the GB1 immunoglobulin 249

protein empirical fitness landscape [19]. On the GB1 landscape, we showed that a 250

population splitting strategy can lead to a five-fold increase in the probability of 251

reaching the global optimum. This probability was shown to further increase by 252

implementation of a “base chance” of selection, which aids in escaping local optima. 253

254

Given that empirical fitness landscapes, such as that of GB1, are scarce, the 255

majority of this study relied on theoretical fitness models. These do not perfectly 256

represent the statistical properties of natural fitness landscapes. In order to improve the 257

reliability of simulations such as these, future work could tailor the NK model to the 258

specific application of protein fitness landscapes. For instance, by allowing K to be 259

drawn from a distribution, as opposed to a constant value for each amino acid position, 260

or by integrating the information offered by PAM substitution matrices into fitness 261

estimations. NK model variants also exist that emphasise the role of neutral drift, 262

another factor that could be integrated into an alternative NK model [40,41]. 263

264

It was observed in this work that landscape structure (e.g. N and K values in the 265

NK model) impacts the performance of directed evolution strategies. It would also be 266

beneficial, therefore, to be able to infer landscape properties prior to performing an 267

experiment. Our previous work demonstrated a method for inferring ruggedness using 268

an FCN model trained to take in mutational spread data from a single starting 269

location [42]. Similar landscape inference techniques have been performed using 270

sequence alignment data, which assuming sufficient data exists online, also do not 271

require sequencing during a directed evolution experiment [43]. 272

273

With de novo protein design approaches still in their infancy, directed evolution 274

remains an important component of the protein engineering toolbox. Here we described 275
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several approaches for directed evolution optimisation that do not require iterative 276

sequencing or synthesis. Many of these approaches can be used with existing 277

experimental techniques, and others are designed to support the advancements in 278

single-cell selection technologies that we hope will improve the quality of directed 279

evolution in future. 280

Methods 281

Model 282

To test our selection algorithms we implemented in silico simulations of directed 283

evolution, which can be applied to either synthetic or empirical landscapes. We model 284

each genetic variant within a population using a one-dimensional array of N integer 285

values (Fig. 1), which is initialised at a random starting location (NK) or wildtype 286

sequence (GB1), creating a population of size P . To calculate the corresponding fitness 287

value of a gene, this array is either used as input to the NK model (Methods: NK 288

Landscapes), or used as coordinates to look up fitness in an empirical data set 289

(Methods: Empirical Landscapes). Our simulation algorithm proceeds with three cyclic 290

steps; selection, proliferation, and mutation. 291

292

Individual cell fitness values are input to a selection function (Fig. 1), which 293

translates relative fitness into probability of selection. Then, each cell is selected (or 294

not) based only on its respective probability of selection. Cells that are selected are 295

proliferated to bring the population back up to its original size. To perform 296

proliferation, a new population of size P is created by randomly sampling (with 297

replacement) from the previously selected cells. This introduces a degree of stochasticity 298

mirroring experimental error and biological variation, as described in other models of 299

evolutionary processes [44]. 300

301

Once a population of size P has been selected and proliferated, mutations are 302

introduced by making random changes to genes in the population. For every cell’s 303

genetic code (an array), each residue (i.e. nucleotide or amino acid) has a random 304

chance, pI , of changing into another random different value (i.e., each other possibility 305

is equally likely). Given the gene length N , the expected number of changes across the 306

entire gene (the “mutations per cell”) is given by µ = NpI . This quantity is useful to 307

work with, as a fixed µ will give comparable results as N varies. 308

309

The final result is a new population of size P , and the process of selection, 310

proliferation, and mutation may be repeated again. In this work, it is assumed that this 311

runs for a fixed number of iterations, and the final result (by which we compare 312

methods) is the maximum fitness across the final population. ’Normalised fitness’ 313

divides this measure by the global maximum of the landscape. 314

Selection Functions 315

In this work, we introduce the concept of a “selection fuction”. This function takes a 316

cell’s fitness percentile, defined as the percentage of other cells in the population it is 317

fitter than, and outputs its chance of being selected to be in the next population. The 318

selection function used in this work is defined by two parameters: a “threshold” and a 319

“base chance”(Fig. 2A). Above the “threshold” the selection function outputs 1, 320

otherwise it outputs the “base chance” (Equation 1). In this work, selection functions 321

are normalised to select a constant fraction of cells (20% throughout this paper). This is 322
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to ensure that in a real continuous directed evolution experiment, the time required for 323

proliferating cells between iterations remains effectively constant such that a “fair” 324

comparison is made between strategies in terms of performance per-unit-time. By fixing 325

the selected proportion (given by the integral of the selection function), our parameter 326

search space is reduced to one dimension, as every base chance has only one possible 327

corresponding threshold value (Equation 2). 328

selection chance =

{
base chance if fitness percentile < threshold

1 if fitness percentile ≥ threshold
(1)

threshold =
1− selected fraction

1− base chance
(2)

NK Landscapes 329

The NK model is a widely used approach for generating synthetic fitness landscapes 330

with tuneable ruggedness [33,34]. In the NK model, a gene is represented by an array of 331

N sites, each of which has A possible values. In this work we will generally set A = 2 332

such that each entry has two possibilities (i.e. binary 1 or 0). Every entry corresponds 333

to a “locus”, which interacts with K other loci in the gene. The fitness contribution of 334

each locus is dependent on the state of that locus and the state of the K other loci it 335

interacts with . The fitness F of a gene G is the sum of the fitnesses of each locus. 336

When K = 0, all loci are independent and the model is linear (and hence has a single 337

peak). The other extreme, K = N − 1, in which every locus interacts with every other 338

locus, is maximally unstructured; the fitness landscape consisting of only random noise. 339

340

The NK model defines a parameterised distribution over functions F : AN → R. To 341

define how to generate samples from this distribution, first let L : N ×K → N be a 342

“locus function”, where L(a, i) is the ith site that locus a interacts with. We require each 343

locus to interact with precisely K other, uniformly random, sites, independent of all 344

other loci. We then also have N ·AK+1 independent, identically distributed standard 345

normal (N (0, 1)) random variables, which we denote as Xa
i0,i1,i2...,iK

, where a ∈ {1...N} 346

and i0,1,...,K ∈ {1...A}. These represent the possible fitness contributions of each loci, 347

with a being the index of the loci in question, and i0,1,...,K being the values of that loci 348

and the K other loci it interacts with, plus itself (i0). 349

350

Then, F is given as the following, where g ∈ AN , and g[i] denotes the ith site in g: 351

F (g) =
N∑

a=1

Xa
g[a],g[L(a,1)],g[L(a,2)],...,g[L(a,K)] (3)

Computationally, the algorithm used explicitly generates and stores L; in particular 352

as a N ×N binary matrix. However, it does not store the N ·AK+1 random variables 353

explicitly as doing so would require far too much memory. Instead, every time the value 354

of Xa
i0,i1,i2...,iK

is required, a, i0, i1, ..., iK are used as inputs to a pre-defined 355

deterministic pseudorandom generation algorithm. As a result, to “look up” the value of 356

Xa
i0,i1,i2...,iK

the same computation process is repeated each time. 357

Empirical Landscapes 358

Empirical fitness landscapes are real data sets produced by measuring the fitness of all 359

possible sequential variants of a protein (or region of a protein). The empirical 360

landscape used in this paper is that of GB1, an immunoglobulin-binding protein found 361
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in Streptococcal bacteria. The fitness of each GB1 variant was determined by stability 362

and binding to IgG-Fc [19]. For our algorithm, the landscape is stored as an 363

four-dimensional array, where each dimension corresponds to a variable residue. By 364

assigning every amino acid a number from 1 to 20, each sequence of amino acids can 365

therefore be mapped to a set of coordinates that points to the corresponding fitness 366

value in the array. The landscape is hence equivalent to N = 4 and A = 20 with the 367

parameters defined above in the NK Landscapes section. All directed evolution 368

simulations were started from the wild-type sequence “VDGV”. 369
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