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The use of bacterial communities in bioproduction instead ofmonocultures has

potential advantages including increased productivity through division of

labour, ability to utilise cheaper substrates, and robustness against

perturbations. A key challenge in the application of engineered bacterial

communities is the ability to reliably control the composition of the

community in terms of its constituent species. This is crucial to prevent

faster growing species from outcompeting others with a lower relative

fitness, and to ensure that all species are present at an optimal ratio during

different steps in a biotechnological process. In contrast to purely biological

approaches such as synthetic quorum sensing circuits or paired auxotrophies,

cybergenetic control techniques - those in which computers interface with

living cells-are emerging as an alternative approach with many advantages. The

community composition is measured through methods such as fluorescence

intensity or flow cytometry, with measured data fed real-time into a computer.

A control action is computed using a variety of possible control algorithms and

then applied to the system, with actuation taking the form of chemical (e.g.,

inducers, nutrients) or physical (e.g., optogenetic, mechanical) inputs.

Subsequent changes in composition are then measured and the cycle

repeated, maintaining or driving the system to a desired state. This review

discusses recent and future developments in methods for implementing

cybergenetic control systems, contrasts their capabilities with those of

traditional biological methods of population control, and discusses future

directions and outstanding challenges for the field.
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Introduction

Amicrobial community consists of two or more co-occurring species within a defined

environment. As community function is the cumulative product of all individuals within

the community, the ability to control the composition and relative abundance of species in

synthetic and natural communities is highly desirable. Dysbiosis (defined here as a

reduction in diversity and loss of species with “beneficial” effects) of natural communities

such as the human gut microbiome or plant rhizosphere can have profound effects on
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their host as a result of altered community function, and has been

implicated in conditions such as cancer (Xavier et al., 2020) or

decreased plant growth (Yin et al., 2021). Population control is

also crucial for applications of synthetic consortia in

biotechnology, which have received increased interest for their

potential advantages over monocultures. These include (for

example) the ability to utilise more complex substrates (Xia,

Eiteman and Altman, 2012), division of labour for decreased

metabolic burden and cross-talk between parts (Tsoi et al., 2018),

and increased yield and robustness to environmental fluctuations

(Stenuit and Agathos, 2015). However, without a method for

maintaining a community’s composition, even minor fitness

differences between species can cause some to outcompete

and overwhelm other species, destabilising the community

and leading to decreased efficiency or population collapse.

To realise the immense potential benefits of synthetic

consortia, researchers are beginning to build upon robust

control methods that are foundational to the many fields of

applied engineering and technology that leverage tools from

control theory. Figure 1 presents an example architecture of a

feedback control loop applied to a microbial community. To use

the lexicon of the field, here the microbial community is referred

to as the “plant” (i.e., the part of the system that needs to be

controlled). Its composition at a particular instance is the

system’s “output”, while the desired community composition

is the “reference”. An uncontrolled system is represented by only

a plant and its output (Figure 1A), while an open-loop system

also includes an “input”, which is an action taken to alter the

community composition (e.g., adding an antibiotic that targets

one species) and has no feedback in response to the output

(Figure 1B). In contrast, a closed-loop system defines an “error”

as the difference between the output and reference, i.e., the

difference between desired and observed community

composition (Figure 1C). Closing the loop involves a

“controller” that computes an input for the plant that

attempts to reduce the error over time, eventually bringing it

to zero, i.e., where the community’s current composition is

identical to the desired composition.

Recent work has delivered several examples of biologically-

implemented compositional control of co-cultures (two species

communities), as well as larger communities where there is no

external input and all aspects of the system such as the controller,

method of measuring output [e.g., through quorum sensing

(Scott et al., 2017)], and method of altering composition [e.g.,

expression of bacteriocins (Kong et al., 2018)] are implemented

biologically. This is covered in more depth in several reviews:

McCarty and Ledesma-Amaro (2019), Grandel, Reyes Gamas

and Bennett (2021), Perrino et al. (2021), and Ronda and Wang

(2022). Applying a control theory perspective to biological

approaches to controlling microbial communities highlights

possible potential areas of improvement, which are organised

here into limitations in performance or capabilities, and

difficulties in implementation.

First, one of the capabilities that many biologically controlled

communities lack is the ability to implement a dynamic reference

i.e., where the desired composition is not static over time. This is

highly desirable in situations where the “optimum” composition

is not constant: for example, in a community where a pathway of

interest is distributed between species (Dinh, Chen and Prather,

2020; Salma et al., 2021) (e.g., to reduce metabolic burden), the

bottleneck may shift over time, for which an optimal controller

could compensate. Additionally, even in systems where the

biological control circuit can create oscillating or dynamic

community compositions (Chen et al., 2015), because it is

encoded genetically into cells, changing the reference is

difficult to do (typically requiring tuning expression of

components in the biological control circuit or restarting the

culture with adjusted initial inoculation ratios), necessitating

many laborious iterations to probe different community

compositions (Jones et al., 2017). This makes it infeasible to

optimise and rapidly explore the design space by searching for

compositions that are best at a desired function (e.g., highest

yield), analogous to how combinatorial DNA assembly can be

used to tune promoter and ribosome binding site strength for

optimal production (Storch et al., 2017). Finally, biologically

FIGURE 1
(A) An uncontrolled system. The community (which can be a
synthetic or natural community in any environment) is the “plant”.
Its composition at a given time is the plant’s “output”. (B): A system
with open-loop control. A control action or “input” to the
plant causes a change in the output. (C): A system with closed-
loop control with a feedback loop. The desired composition at a
given time is the “reference”, and the difference between the
reference and output is the “error”, which is used by the
“controller” to decide on “input” that affects community
composition in a way that drives the error towards zero
(i.e., towards desired community composition).

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Lee and Steel 10.3389/fbioe.2022.957140

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.957140


controlled systems are complex and influenced by factors such as

stochasticity or uncertain operating conditions. For example,

approaches that depend on the concentration of quorum sensing

signals (You et al., 2004; Balagaddé et al., 2008; Kong et al., 2018;

Stephens et al., 2019; Miano, Liao and Hasty, 2020) are

susceptible to variations that may arise from a change in

growth phase and may not be consistent in different

environments (e.g., batch vs. controlled exponential growth or

small vs. large scale cultures), which can degrade or break the

control approach. With the control approach genetically

encoded, there is also little opportunity for intervention and

human input to adjust the approach to counteract stochasticity

or changing conditions.

Second, building and implementing complex biological

controllers remains significantly challenging. Initial system

design requires the selection of appropriate biological parts

(e.g., inducible promoters) with known characteristics (e.g.,

dynamic range, basal output) that can produce the desired

control scheme. This problem is exacerbated when trying to

work with larger communities or those containing non-model

organisms, which may lack toolboxes of well-characterised parts.

Crucially, parts within each species (e.g., promoters) and parts

for interspecies communication (e.g., quorum sensing molecules)

need to be orthogonal, and even then are susceptible to cross talk

through the use of shared cellular resources (Zhang et al., 2021).

While new orthogonal quorum sensing systems are emerging

(Scott and Hasty, 2016; Kylilis et al., 2018; Jiang et al., 2020), it

remains a factor preventing the design and control of arbitrarily

large communities. These parts may also not be easily transferred

to different species (Adams, 2016), preventing circuits that

worked in one community from being translated into another.

Past the design stage, biological control circuits face further

challenges when engineered into cells: while it is possible to

encode increasingly complex logic circuits (Nielsen et al., 2016),

they contain more possible points of failure (Fontanarrosa et al.,

2020) and come at the cost of increased metabolic burden

(Borkowski et al., 2016), resulting in 1) strong selective

pressure for mutations that alleviate the burden, but

consequently break the control scheme, 2) diversion of

cellular resources from the product/function the cell is

responsible for, possibly negating the benefits of a community,

or 3) altered circuit dynamics because individual parts do not

function as intended. An early example of biologically controlled

communities, a two species predator-prey E. coli co-culture

where LuxR and LasI quorum sensing molecules were linked

to expression of the ccdB toxin, could not be implemented at

macroscale as circuit function was lost before it could be observed

(Balagaddé et al., 2008). The desired behaviour was observed in

microchemostats with a 9 nl volume, which required fewer cell

divisions and thus was less vulnerable to the burden imposed by

the circuit. While later examples of biologically controlled

communities have been implemented at a macroscale, burden

is exacerbated when the control circuit is expanded-whether to

control communities with more species or perform more

complex control functions.

Similar issues to the above can arise for those attempting to

control any biological system. The next section will therefore

highlight systems where biology is interfaced with computer

control and how it overcomes some of these issues; the rest of

the review will then explore its application to microbial

communities.

Cybergenetic control

Cybergenetic control describes the interfacing of biological

systems with computers to create hybrid systems that bring

together the best features of biological and computational

engineering (Figure 2). A system’s output (e.g., expression of a

fluorescent protein) is measured and processed by a computer,

which uses the output data and a control strategy to decide on an

input. The input is then applied to the community via an

automated actuation device (e.g., a syringe pumping a

chemical inducer), closing the feedback loop. In the

application of this field to the control of gene expression,

computers control the expression of genes such as fluorescent

reporters in single cells or monocultures, and has been used to

explore gene networks (Menolascina et al., 2014), understand

regulatory dynamics (Rullan et al., 2018), and tune growth rates

(Milias-Argeitis et al., 2016). Such examples and the methods

used are covered in reviews by Carrasco-López et al. (2020) and

Lugagne and Dunlop (2019). In this paper we will build on these

ideas, describing recent progress in the field of monitoring and

actuating microbial communities and the application of

cybergenetic control to cells within a community, rather than

genes within a cell.

By implementing control actions electronically,

cybergenetic control can address many issues facing

biological control. In terms of performance, it enables

dynamic and temporally complex reference compositions

rather than a single steady state that is genetically hard-

coded. The system’s decision-making circuitry is unaffected

by biological fluctuations such as growth phase, substrate/

product concentrations, or culture size, and can rapidly

adjust its control approach to respond to fluctuations,

allowing for robust control in different contexts.

Additionally, while it cannot completely negate the effects of

evolution (since cells can mutate to ignore inputs or stop

providing measurable outputs), the control approach can be

adjusted in real-time to deal with minor mutations (e.g., if a

species evolves to become less responsive to an input, the

duration or intensity of an input can increase). In terms of

implementation, computing the control approach in silico

removes the need for control circuits that scale in size with

community complexity, partially mitigating issues such as

retroactivity or the need for orthogonal parts. The decreased
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metabolic burden also reduces the selective pressure to evolve

away from the control circuit.

Even if biological capabilities advanced rapidly (e.g.,

increased availability of orthogonal parts, methods of

alleviating burden), as highlighted by Kumar, Rullan and

Khammash (2021), a common control engineering strategy in

fields such as aerospace is “Hardware-In-the-Loop” (HIL)

testing, where a controller is connected to a test system that

simulates reality. It allows for design and optimisation of

controllers in systems where iterative testing is otherwise too

time consuming or expensive, accelerating the design cycle.

Cybergenetic control represents the application of this strategy

to biology, interfacing cells with computers to better understand

the system, build and test models and hypotheses, and rapidly

iterate and probe the design space to design and optimise a

control approach before finally implementing it biologically. For

example, similar to how knockouts can be used to probe genes

responsible for a phenotype, cybergenetic control could facilitate

the testing of biological hypotheses such as links between

community structure and function (Bell, 2019). As such, even

if biologically-implemented control is the ultimate goal,

cybergenetic control may be a suitable and beneficial

intermediate step toward technological maturation.

To implement cybergenetic control (Figure 2), a system

requires an input method (actuating one or several species in

the community to affect their relative abundance), an output

(measuring the composition), and a control algorithm that

describes what input should be provided to achieve a desired

output, given the current state of the system. Subsequent sections

highlight existing methods for each of these aspects, discussing

factors to consider and which are most suitable in different

circumstances.

Control input: Actuating species in a
community

Controlling community composition requires control inputs

that can affect the relative abundance of constituent species. This

can be achieved through several methods, one of which is

engineering species to have a change in abundance in

response to an external signal. This requires regulatory

components that can transduce the signal into the cell and an

actuating component that causes the change in abundance. There

is an ever-increasing toolbox of novel genetic parts that can

transduce signals into cells: a wide variety of chemically inducible

promoters have been developed (Examples in Figure 3A), 12 of

which were demonstrated to be orthogonal when integrated into

a single strain of E. coli (Meyer et al., 2019), while new promoters

can be mined and developed for other species in the community

(Weinstock et al., 2016). Exogenous addition of chemical

inducers can be automated: at microscale, computer-

controlled syringes can pump chemicals into a microfluidic

chamber (Figure 2, Input) (Menolascina et al., 2014;

Burmeister and Grünberger, 2020; Burmeister et al., 2021);

while at macroscale, cheap bioreactor systems such as Chi.Bio

(Steel et al., 2020), the turbidostat designed by Guarino et al.

(2019), or the turbidostat of the eVOLVER platform (Wong et al.,

2018; Gutiérrez, Kumar and Khammash, 2022) removes the need

for manual input without expensive or custom-built equipment.

FIGURE 2
Cybergenetic control of community composition. The composition of a microbial community (plant, top right) needs to be controlled for
optimal function, e.g., bioproduction or bioremediation. A sensor such as a flow cytometer, sequencer, or microscope is used to measure
community composition in real-time (output). The measured and desired population data is fed into a computer acting as the controller, which
decides on a control action. An actuator provides a chemical (e.g., injecting media with chemical inducers into amicrofluidic device) or physical
(e.g., shining light or shaking the culture vessel) input to the plant that leads to a change in community composition, and the cycle is repeated.
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Alternatively, light is another common method of inducing

gene expression (LED in Figures 2, 3B) (Levskaya et al., 2005;

Hirose et al., 2008; Möglich, Ayers and Moffat, 2009; Toettcher

et al., 2011; Melendez et al., 2014; Baumschlager, Aoki and

Khammash, 2017; Chait et al., 2017; Rullan et al., 2018; Li

et al., 2020; Baumschlager and Khammash, 2021; Lalwani

et al., 2021; Lindner and Diepold, 2022; Sheets and Dunlop,

2022). Optogenetic approaches in bacteria [reviewed by

Baumschlager and Khammash (2021)] such as one- and two-

component systems (Figure 3B) or photocaged and

photosensitive inducers have several benefits: application of

different wavelengths of light is instantaneous, unlike chemical

inducers which have delays during pumping and mixing/

diffusing through the culture; it is quickly reversible while

chemicals are persistent and need to be consumed or diluted

out, allowing for more temporally complex induction profiles; it

allows for spatially patterned induction; and while high-intensity

light can have phototoxic effects (Baumschlager and Khammash,

2021), light has less potential for off-target effects (e.g., compared

to many chemical inducers). Light can also be used in

conjunction with chemical approaches such as with

photocaged IPTG (Isopropyl β-D-1-thiogalactopyranoside),
which can be transported into cells with no effect and then

uncaged with UV-A light for faster and more homogenous

induction (Burmeister et al., 2021), or inactivation of aTc

(anhydrotetracycline), pausing transcription without the need

to dilute all the aTc from the growth media (Baumschlager,

Rullan and Khammash, 2020). However, while light can be

implemented at small to medium scales, light penetration may

be a problem for large, dense cultures, and is difficult to

implement in certain natural environments such as the gut.

Additionally, while many optogenetic systems have been

developed and described on databases like Optobase (Kolar

et al., 2018), light input is limited by the number of

orthogonal light-sensitive parts which respond to non-

overlapping wavelengths, constraining the complexity of a

community that can be controlled exclusively with light.

Other response-inducing inputs include: promoters sensitive

to temperature (Figure 3C) allowing actuation of communities

within human tissue through localised heating using focused

ultrasound (Vasina, Peterson and Baneyx, 1998; Valdez-Cruz

et al., 2010; Hoynes-O’Connor et al., 2015; Piraner et al., 2017;

Piraner, Wu and Shapiro, 2019; Zheng et al., 2019); osmolarity

(Uhlendorf et al., 2012), and electricity through (for example)

peroxide-inducible promoters that sense electrochemical

reduction of oxygen to hydrogen peroxide (Figure 3D)

(Terrell et al., 2021). However, these methods have distinct

disadvantages against chemical and light induction: while

there are orthogonal options (e.g., promoters activated at a

range of temperatures/osmolarities), these options are not as

easily multiplexable (e.g., several chemical inducers can be added

concurrently, but temperature can only be a single value at a

given time). These methods may also have off-target effects;

FIGURE 3
Toolbox of orthogonal genetic parts for inducing gene
expression in bacterial communities, arranged by availability of
orthogonal parts from highest to lowest. Common
examples from each input method are depicted, but this is
not an exhaustive list, and other mechanisms and
implementations are possible for each method. (A) Chemically
induced promoters, where expression of a gene of interest
(GOI) is activated/inhibited by a transcription factor, which is
itself activated/inhibited by exogenous addition of a
chemical inducer. (B) Optogenetic regulators (here illustrated
by two-component systems), where a light-sensing protein is
reversibly changed after exposure to particular wavelengths of
light and activates a response-regulating transcription factor
that activates expression of a GOI. (C) Temperature
sensitive promoters, which are typically repressed by a
transcription factor whose activity is diminished past a certain
temperature, activating expression of a GOI. (D) Peroxide
inducible promoters which respond to electrical inputs.
Application of electricity to the environment reduces
dissolved oxygen to hydrogen peroxide, which activates the
OxyR transcriptional activator, thus enabling expression of
a GOI.
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compared to a monoculture where temperature induces a

response in a homogenous population, in a community

temperature change may differentially affect constituent

species (e.g., select for cold-tolerant bacteria).

Coupled to these regulatory parts are components that

actuate cell behaviour to affect relative abundance. For

example, a species’ relative abundance can be decreased by

initiating cell death [e.g., by expressing a lysis gene such as

ccdB (Balagaddé et al., 2008; Scott et al., 2017)] or growth arrest

(Edwards et al., 2013; Aditya et al., 2021). In contrast, expression

of toxins or anti-microbial peptides such as bacteriocins targeting

other species (Kong et al., 2018; Liu et al., 2019; Fedorec et al.,

2021; Lalwani et al., 2021) or expression of genes that enable

growth (e.g., antibiotic resistance cassettes or anti-toxins) (Liu

et al., 2019; Lalwani et al., 2021; Gutiérrez, Kumar and

Khammash, 2022; Sheets and Dunlop, 2022) will increase the

species’ relative abundance instead. For example, Lalwani et al.

(2021) demonstrated open loop control of an E. coli-S. cerevisiae

co-culture through optogenetic regulation of the MazEF toxin-

antitoxin system. Fine-tune adjustments for a more graded

response could be achieved by altering a species’ fitness and

growth rate e.g., adjusting metabolic burden or placing enzymes

such as RNA polymerase (Izard et al., 2015), amino acid

synthases (Milias-Argeitis et al., 2016) or those responsible for

central glucose metabolism (Stephens et al., 2019; Dinh, Chen

and Prather, 2020) under inducible control. Inputs can also be

used to adjust the strength of interspecies interactions (e.g.,

tuning the expression of quorum sensing molecules that

species use to communicate with each other (Balagaddé et al.,

2008; Dinh, Chen and Prather, 2020; Miano, Liao and Hasty,

2020). Finally, inputs can also be used to induce reversible or

irreversible cell differentiation (Aditya et al., 2021; Salzano, Fiore

and Bernardo, 2021), which may be particularly relevant for

bioproduction communities where subpopulations are focused

on replication or production. Recent developments in CRISPR

have enabled organism and locus-specific genome editing

without the need to isolate and culture the species (Rubin

et al., 2022), potentially allowing these inducible responses to

be engineered into key species within a complex natural

community.

While off-target effects of environmental parameters are

undesirable when using inducible promoters, they can act as

inputs in their own right: different species have a range of

optimum pH, temperatures, osmolarities, and oxygen

concentrations, and these parameters can be controlled to

directly adjust selective pressures for particular species e.g.,

increasing pH to select for an acidophile, adding salt to select

for a halophile, or displacing oxygen to select for an anaerobe.

Environmental factors can also influence interspecies

interactions; for example, pH may affect the degradation rate

of quorum sensing molecules (You et al., 2004). In this context

where response to the input is not engineered, prior knowledge of

species characteristics or testing is needed to determine how the

composition responds to input. Other examples of direct input

that don’t induce an engineered response include the

introduction of antibiotics or bacteriocins that can affect a

broad range of species, or more targeted bacteriophages (Lu

and Collins, 2007) that reduce the relative abundance of a subset

of the community. Varying ability to utilise nutrients can also be

exploited as an input: Treloar et al. (2020) proposed using

different carbon sources and Martinez et al. (2022) showed

that (open loop) dynamic feeding profiles with different

substrates stabilised a co-culture of yeast and E. coli, while

Fiore et al. (2022) demonstrated in silico simulated closed-

loop control of a co-culture by modulating growth medium

dilution rate. Kusuda, Shimizu and Toya (2021) as well as

Bertaux et al. (2022) both successfully used cybergenetic

control to tune the population ratio of essential amino acid

auxotrophs by adjusting the concentration of amino acids in

the media. Other chemical additives that differentially affect

species such as minerals, secondary metabolites [e.g., root

exudates (Zhalnina et al., 2018)], or signalling molecules

(Stephens et al., 2019; Miano, Liao and Hasty, 2020) can also

be used. Finally, spatial partitioning can have a large effect on

cells, both influencing their local environment (factors such as

pH and oxygen concentration) as well as modulating the strength

of interactions between species (Timmermans et al., 2018; Dal Co

et al., 2020). Partitioning has been shown to support populations

with primarily negative inter-species interactions (Wu et al.,

2022) while aggregate formation can promote species with

mutually positive interactions (Konstantinidis et al., 2021). It

can be modulated on solid media by varying the distance and

arrangement of colonies (Jiang et al., 2022), or in liquid media by

controlling properties such as shaking/mixing speed (shaker in

Figure 2), flow rate, or available surface area (Timmermans et al.,

2018).

Instead of inducing an engineered response or selecting for

species by changing environmental conditions, a species’ relative

abundance can also be increased by direct addition into the

community. For bioprocesses, this method of input can be

completely automated: Aditya et al. (2021) (discussed further

below) were able to adjust the composition of a two species yeast

co-culture by pumping one strain from a “reservoir” into the

main culture, increasing its relative abundance. The number of

reservoirs could be increased for complex communities with

more species, and while maintaining several monocultures to

control one community may negate economic benefits in

bioproduction, the relative simplicity in implementing this

input (i.e., no genetic engineering is required) means that it

could be useful for probing population dynamics and gaining

fundamental insights for a community. For natural communities,

faecal microbiota transplants to treat C. difficile infections are an

example of how direct addition is used to actuate community

composition—the microbiota from the faeces of a healthy donor

colonises the recipient gut to provide resistance against recurring

infection (Sorbara and Pamer, 2022). As another example,
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rationally designed consortia with defined functions (e.g.,

production of short chain fatty acids) and traits that support

colonisation have been introduced to murine gut microbiota to

treat immune-mediated colitis (van der Lelie et al., 2021). While

the amount of inputs increase with complexity of the community,

communities can be controlled without needing to actuate every

constituent species-actuating a subset of “driver species”

determined from interspecies interactions can also be enough

to drive the entire community to the desired state (Angulo, Moog

and Liu, 2019).

Overall, the choice of input method is a trade-off between

many factors such as community size and complexity (and thus

the number of orthogonal inputs required), feasibility of

engineering the constituent species, ease of implementation,

and the level of desired or necessary control (for example, an

engineered chemical-inducible response may allow for fine-

tuned control of a single species within a community, while

altering pH will affect a broad range of species unequally). The

environment also limits possible methods of input: for example,

while nutrient availability in the gut microbiome could be

modulated through diet or prebiotics, spatial partitioning

cannot be easily changed. Finally, a system may use several

input methods in conjunction to affect community

composition: for example, Connors et al. (2022) adjusted

4 parameters (pH and concentration of sugars, amino acids,

and yeast extract) in an open-loop system to regulate the makeup

of a 10 species community.

Control output: Measuring
community composition

Having actuated the community, the next challenge lies in

measuring its response. This measured “output” is needed for

comparison with the reference to calculate the error and compute

the next control action that brings the error toward zero and

achieve the desired community composition. A commonmethod

of measuring output in cybergenetic systems is fluorescence: both

in systems controlling the expression of a fluorescent protein

(Milias-Argeitis et al., 2011; Uhlendorf et al., 2012; Melendez

et al., 2014, 2014; Menolascina et al., 2014; Fiore et al., 2016;

Lugagne et al., 2017; Rullan et al., 2018; Shannon et al., 2020), and

systems where the fluorescent protein acts as a proxy e.g., if it is

linked to expression of a different gene (Toettcher et al., 2011;

Perrino et al., 2019). By expressing different reporters in each

species, fluorescence can also act as a proxy for community

composition in cybergenetic control. The intensity of each

fluorophore across the population can be measured

concurrently as an approximation of the relative abundance of

each species (Shou, Ram and Vilar, 2007; Kusuda, Shimizu and

Toya, 2021) or by measuring fluorescence of many individual

cells e.g., through flow cytometry (Aditya et al., 2021;

Konstantinidis et al., 2021) or microfluidics systems with

microscopes (Chait et al., 2017) (outputs in Figure 2).

Fluorescence has additional benefits: it provides spatial

information in heterogenous environments (Chen et al., 2015;

Kozlowski et al., 2021; Krishna Kumar et al., 2021) and

computational tools with integrated image analysis and

control algorithms have already been developed (Pedone et al.,

2021). However, it also has drawbacks as a method of measuring

community composition: fluorescent intensity is an imperfect

proxy for population data as there can be variations in expression

levels and delays [due to folding kinetics (Pédelacq et al., 2006)]

between reporters. The number of species that can be tracked is

also limited by the number of fluorescent reporters with

orthogonal excitation and emission spectra. While flow

cytometry increases this limit by allowing species to carry

more than one reporter [i.e., giving each species a unique

combination (Bertaux et al., 2022)], expressing several

reporters comes at the cost of increased metabolic burden.

Beyond reliance on engineered fluorescence, flow cytometry

can also differentiate cells based on natural scattering properties

and autofluorescence (Boddy et al., 2000; Giana et al., 2003;

Bhatta, Goldys and Learmonth, 2006) or fluorescence from

universal dyes, which can potentially even distinguish different

strains of the same species. For example, Boon et al. (2018) was

able to differentiate between a synthetic community of 27 strains

of Lactobacillus (representing 8 distinct species) through staining

with SYBRGreen I and propidium iodide. This ability to measure

composition without engineering the constituent species may be

particularly important in environments where genetically

modified organisms are impractical or undesirable e.g., when

looking to control natural communities. Flow cytometry has

already been used to monitor subcommunities within large,

complex communities in wastewater (Koch et al., 2013),

freshwater (Props et al., 2016), or maize silage (Lambrecht

et al., 2018). Other advantages include its ability to be

automated (Milias-Argeitis et al., 2016) and the existence of

tools such as flowEMMi (Ludwig et al., 2019) and the

CellCognize pipeline (Özel Duygan et al., 2020) that have

been developed to translate cytometric data into microbial

population data. However, while flow cytometry excels at

characterising “known” populations (e.g., in a synthetic

community) (Özel Duygan et al., 2020; Aditya et al., 2021;

Bertaux et al., 2022; Gutiérrez, Kumar and Khammash, 2022;

Martinez et al., 2022), increased complexity can result in an

inability to differentiate, or misclassification of species (Özel

Duygan et al., 2020).

For more complex communities, accurate, high-resolution

measurement of composition can instead be achieved through

sequencing (sequencing read in Figure 2) of the whole genome or

amplicon sequencing of marker genes such as 16s (Johnson et al.,

2019), where a universal primer is used to amplify the 16s gene

from every species in the community. Alternatively, artificial

markers such as plasmid barcodes can be engineered into strains:

Wu et al. (2022) used sequencing to quantify population
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TABLE 1 Methods of measuring community composition (output) and their characteristics (i.e. factors that need to be considered when selecting a
method).

Method Requires
species to
be
engineered

Maximum
community
size

Timeframe Equipment
required

Commonly
automated

Quantitative Other
considerations

Community averaged
fluorescence (e.g.,
plate reader)

Yes Limited by number
of orthogonal
fluorescent
proteins

Seconds Fluorescent
spectrometer or
plate reader

Yes Yes • Imperfect proxy for
population (e.g.,
different folding
kinetics)

• Does not account for
population
heterogeneity

Single cell
fluorescence through
microscopy (e.g., with
microfluidics/mother
machine)

Yes Limited by number
of orthogonal
fluorescent
proteins

Minutes Microscope Yes Yes •Provides spatial data

Single cell
fluorescence through
flow cytometry

Yes Limited by number
of orthogonal
fluorescent
proteins

Minutes Flow cytometer Yes Yes • Can measure
multiplexed fluorescent
reporters
(>1 fluorophore per
cell), allowing more
possible combinations

Flow cytometry with
autofluorescence

No Dependent on
community

Minutes Flow cytometer Yes Yes • May not provide strain/
species level resolution

Flow cytometry with
dyes and natural
scattering

No Dependent on
community

Minutes-hours Flow cytometer No Yes • May not provide strain/
species level resolution

Marker gene (e.g.,
16s) sequencing

No Extremely large,
complex
communities

Hours-days Sequencer or
sequencing
service

No No (relative
abundance only)

• Little prior knowledge
of species required;

• Biases from PCR
amplification step

• Labour intensive
• Limited strain level

resolution

Barcode sequencing Yes Can be designed
for community of
any size

Hours-days Sequencer or
sequencing
service

No Yes (requires
calibration)

• Can account for biases
from PCR amplification

• Requires calibration to
be quantitative

• Labour intensive

Selective plating and
counting cfus (colony
forming units)

Yes Limited by
selection pressures

Days Selective plates No Yes • Extremely labour
intensive

• Species must be
culturable

qPCR (quantitative
polymerase chain
reaction) of unique
DNA sequences

Yes Can be designed
for community of
any size

Hours Real-time PCR
thermocycler

No Yes • PCR is labour intensive

Cell free RNA sensors No Can be designed
for community of
any size

Hours Paper-based
RNA sensor

No Semi quantitative • Can target 16s genes
•Design and optimisation

required (e.g., NASBA
primers)

• Each sensor must be
tested against all others
for orthogonality

ARGs (acoustic
reporter genes)

Yes 2 orthogonal
outputs

Hours Ultrasound
scanner

No Yes • Allows non-invasive
imaging in hard-to-
reach communities

• Can image single cells
• Provides spatial data
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dynamics of a 47-strain community of plasmid-barcoded E. coli.

While marker gene sequencing may not provide functional

information for more in-depth community study, its reduced

cost and high resolution make it well suited for real-time

monitoring of relative abundance (Benítez-Páez, Portune and

Sanz, 2016), though on its own it cannot provide absolute

abundance data (Jian et al., 2020). Developments in third

generation sequencing technologies such as the nanopore

technologies continue to decrease time and cost per base pair,

leading to the rise of in situmetagenomic sequencing as reviewed

by (Latorre-Pérez et al., 2020) who also highlighted their

potential use in real-time monitoring of industrial

bioprocesses to provide feedback and enable corrective

actions. However, the relative cost of sequencing (particularly

for longer reads covering the entire 16s gene instead of smaller

variable regions), lower throughput (requiring DNA extraction

and amplification), and slow timeframe remain

drawbacks compared to methods such as fluorescence and

flow cytometry.

Less common methods to measure composition include:

dilution plating on different selective medias and counting

CFUs (colony forming units) (Wu et al., 2022), which is

laborious and slow; qPCR (quantitative Polymerase Chain

Reaction) of unique DNA sequences (Mee et al., 2014; Jian

et al., 2020; Kleyer, Tecon and Or, 2021); or RNA sensors on

paper-based cell-free systems (Takahashi et al., 2018). qPCR and

RNA sensors can be quantitative and cost effective, but typically

require primer/RNA sensor design for each species and involve

laborious sample extraction and amplification. For communities

in locations where frequent sampling is difficult or inconvenient

such as the human gut, species abundance can be monitored

non-invasively using bioluminescent imaging (Foucault et al.,

2010) or acoustic reporter genes, which encode gas vesicles that

can be detected through ultrasound (Bourdeau et al., 2018;

Sawyer et al., 2021). While promising, both are limited by the

number of orthogonal reporters, though continued development

and genome mining efforts may lead to advances like those of

fluorescent proteins (Hurt et al., 2021).

Overall, when choosing a measurement approach,

characteristics such as measurement frequency and delay,

cost, automatability, ease of sampling, community size, and

requirement to engineer each species in the community

should be considered, and multiple methods can be used in

tandem to complement one another (Table 1). For example, a

synthetic four species community of easy-to-engineer species

in a well-characterised and tightly controlled bioproduction

environment (Jones et al., 2017) can rely on fluorescence for

constant, immediate, and automated population data

collection at very little cost. In comparison, a complex

community in a natural environment cannot expect to have

the same sampling frequency, but as suggested by (Props et al.,

2016), can still achieve accurate high frequency measurements

through flow cytometry with results supported by supervised

16s sequencing at less frequent intervals (i.e., supervised

sampling at points of interest, such as when flow cytometry

indicates large changes in relative abundance). Though the

delay between measurement and useful data is significantly

longer, it still “closes the loop”, providing feedback that can

shape the input.

Control algorithms: Designing the
control approach

Once the output is measured, a control algorithm (Table 2)

determines an appropriate input level to drive the community to

the desired composition. Given the same system, different

algorithms can lead to drastically different outcomes (Fiore

et al., 2016; Milias-Argeitis et al., 2016; Lugagne et al., 2017),

and hence algorithm selection depends on the application and

control goals in question. An easy-to-design and deploy

algorithm is bang-bang control (Lugagne et al., 2017;

Carrasco-López et al., 2020), which simply selects a binary

control action (the input to the community, e.g., light/no

light) based on the sign of the error (i.e., species’ relative

abundance is above/below a desired threshold). For certain

input methods, binary control actions may be preferred over

continuous techniques for ease of implementation (e.g.,

providing or withholding a chemical inducer is simpler than

providing a range of concentrations), but control actions from

other algorithms with superior characteristics can be converted

from continuous to discrete bang-bang through pulse width

modulation in some cases (Menolascina et al., 2014).

One of these alternative algorithms is PID (Proportional-

Integral-Derivative) control, a classic control algorithm

commonly implemented across engineering and in particular

cybergenetics. The control action is the sum of a term

proportional to the current error (the “P” term), a term that

is the integral of the past error (“I” term), and a term that is the

derivative of the error (the “D” term), but depending on the

system suitable control may be achieved with just P-control

(Kusuda, Shimizu and Toya, 2021), just I-control (Rullan

et al., 2018), PI-control (Toettcher et al., 2011; Menolascina

et al., 2014; Fiore et al., 2016; Milias-Argeitis et al., 2016;

Lugagne et al., 2017), or PID-control (Gutiérrez, Kumar and

Khammash, 2022). PID-type controllers are particularly

desirable as they are computationally simple to implement

and do not require a model or deep understanding of the

biological system for tuning (Milias-Argeitis et al., 2016),

though model-guided optimisation and tuning of controller

parameters such as gains allow for improved control and

optimisation of different targets for different applications

(Gutiérrez, Kumar and Khammash, 2022). Given a constant

reference community composition, PID control is capable of

driving the error to zero and performing disturbance rejection for

many common classes of disturbance, maintaining the
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community at a desired reference, as demonstrated in a two-

species co-culture of auxotrophic E. coli strains controlled by

amino acid concentration (Kusuda, Shimizu and Toya, 2021).

However, there are drawbacks to PID control: it functions best at

set-point control but is less effective if the reference is dynamic

(Menolascina et al., 2014), is susceptible to windups and

oscillatory dynamics (Fiore et al., 2016), and is typically best

suited for SISO (Single Input Single Output) systems while

complex communities may need multiple input methods to

actuate all the species (or have each species controlled by an

individual PI controller).

MPC (Model Predictive Control) is another common

alternative for cybergenetics (Milias-Argeitis et al., 2011, 2016;

Uhlendorf et al., 2012; Fiore et al., 2016; Chait et al., 2017; Perrino

et al., 2019; Aditya et al., 2021; Bertaux et al., 2022) that

overcomes some of the issues of PID control. It predicts

system behaviour over a finite time interval using a model of

the system, alongside the current output and reference to decide

the input, and then repeats this process when data is

subsequently collected (Morari and H. Lee, 1999). MPC has

been shown to effectively follow a reference that ramps down

linearly, decreases in step values, or follows a sine wave in a

biological system (Fiore et al., 2016), can be applied to MIMO

(Multiple Input Multiple Output) systems (Tanaskovic et al.,

2013), and the iterative nature means that modelling inaccuracies

are not propagated in time (Milias-Argeitis et al., 2016).

However, MPC is more computationally expensive and

requires accurate mathematical models, necessitating prior

knowledge or preliminary system identification experiments to

determine model parameters (Milias-Argeitis et al., 2011) and

additional experiments whenever the plant is altered (e.g., a new

species is added). As the complexity of the community increases,

it also becomes increasingly difficult to accurately model the first

and higher order interactions between all species.

Other control strategies include ZAD (Zero Average

Dynamics) which is also model-based and demonstrated

similar results to MPC (Menolascina et al., 2014), and deep

reinforcement learning combined with bang-bang inputs

(Treloar et al., 2020). The latter was shown to be superior to

PID for in silico simulated population control of a co-culture of

auxotrophic bacteria, particularly when composition sampling

was less frequent, making it more suitable when using methods of

measuring output community composition which are expensive

and slow. Reinforcement learning approaches are also model-

free, though they still require experiments to gather training data.

Fiore et al. (2022) also showed in silico co-culture population

control using a gain-scheduling state feedback controller and a

sliding controller, both of which altered dilution rate of a

chemostat as an input. Overall, when choosing a control

strategy (Table 2), factors to consider include: the overall

length of time needed to design and optimise the approach,

which is heavily influenced by the need for a system model, the

control goal (i.e., whether set point control with a fixed reference

is sufficient), the capabilities of the input method, the frequency

of measured output and the time delay between measurement/

actuation, and the computational cost.

TABLE 2 Control algorithms that can be used for cybergenetic control and their respective advantages/disadvantages.

Control
Algorithms

Advantages Disadvantages

Bang-Bang • Model not required • Poor at handling delays in system

• Easy to implement computationally • SISO (single input single output) system that only controls
one species

• Qualitative inputs may be easier to implement (e.g., inducer/no inducer vs. a
range of inducer concentrations)

PI (proportional-integral) • Model not required • SISO (single input single output) system that only controls
one species

• Easy to implement computationally • Cannot vary reference over time

• Susceptible to windups and oscillatory dynamics

MPC (model predictive
control)

• Can vary reference over time • Model required

• Can be applied to MIMO (multiple input multiple output) systems that
control >1 species

• Optimisation required to fit experimental data to model

• Computationally expensive

ZAD (zero average
dynamics)

• Can vary reference over time • Model required

• Optimisation required to fit experimental data to model

Reinforcement learning • Model not required • Requires more training data than MPC

• “Black box” system and difficulty in extrapolating past
training data set conditions
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Cybergenetic community control:
Recent examples

The application of cybergenetics to control of microbial

community composition has not been reported as frequently

as cybergenetic control of gene expression. As of publication of

this review, the authors are aware of four completely closed-loop

experimental systems, with several others that have input and

output methods but do not use the feedback to close the loop. The

complete systems are described briefly below.

In 2021, Kusuda, Shimizu and Toya displayed cybergenetic

control of continuous E. coli co-culture in a custom Arduino-

based 1-L reactor. The strains were methionine or arginine

auxotrophs, and the culture was supplied with either plain

media or media supplemented with either amino acid as the

input method. The strains carried either Green or Red

Fluorescent Protein (GFP/RFP), allowing their relative

abundance to be monitored in situ through community-

averaged fluorescence using LEDs and light sensors on the

device. With just Proportional control (P-control), they were

able to maintain a defined population ratio for >25 h. As the

authors point out, their setup could easily be adapted for strains

which utilise different carbon sources or expanded to control

more than two strains. However, they also concur that they only

maintain a static setpoint instead of a dynamic reference and that

measurement of composition could be more robust, as their

results assumed that difference in culture parameters did not

affect fluorescence characteristics (for example, cells in stationary

phase that are starved of their respective amino acids are unlike to

fluoresce at the same intensity as cells in exponential phase with

an excess of amino acids).

In a 2021 preprint followed by a peer reviewed publication in

2022, Bertaux et al. reported the ReacSight strategy, which amongst

other capabilities was able to dynamically control composition of a

two species yeast co-culture in a custom made 30 ml reactor or a

commercially available 30 ml Chi.bio reactor (Steel et al., 2020). The

co-culture consisted of a histidine auxotroph and a histidine

prototroph (i.e., able to produce histidine) with a slow-growth

phenotype. Auxotroph growth was limited by histidine

availability, and the system grew the co-culture using media with

a fixed concentration of histidine. As histidine availability was

determined by the OD setpoint (since higher ODs led to

increased nutrient consumption and thus decreased histidine

availability), the input to the system was adjustments to the OD

setpoint, which led to changes in growth rate of the histidine

auxotroph relative to the prototroph. The output was single-cell

fluorescence of mCerulean and/or mScarlet measured through

automated flow cytometry, achieved with a pipetting robot and

ReacSight (Bertaux et al., 2022). With Model Predictive Control

(MPC) they were able to control community composition but

encountered issues with steady state error and then oscillations,

which were attributed to time delays that were not accounted for in

the model.

Later in 2021, Aditya et al. demonstrated cybergenetic control

over differentiated and non-differentiated yeast cells in continuous

culture inside the ReacSight reactors (Bertaux et al., 2022). They

initially combined two input methods, using optogenetics to induce

genetic recombination that leads to differentiation (and thus increase

relative abundance of differentiated cells) or pumping of non-

differentiated cells from a “reservoir” reactor into the main

reactor (to increase relative abundance of non-differentiated cells),

and then inserted an optogenetic growth arrest system into

differentiated cells that could be induced to allow non-

differentiated cells to outcompete, eliminating the need for the

reservoir. Similar to before, the output was single-cell fluorescence

of mCerulean or mNeonGreen using automated flow cytometry and

ReacSight (Bertaux et al., 2022). Using MPC they demonstrated

control with a dynamic (reservoir reactor as an input) and static

(growth arrest as an input) reference, and then further expanded the

system by cloning two recombination cassettes into the non-

differentiated strain, creating sub-populations upon light

induction. However, while composition of the sub-populations

was affected by the duration of light pulses, they did not

demonstrate control over this consortia.

Finally, in 2022, Gutiérrez, Kumar and Khammash

demonstrated cybergenetic control over an E. coli co-culture in a

commercially available 40 ml eVOLVER reactor (Wong et al., 2018)

which contained constant, sub-lethal levels of an antibiotic for up to

40 h.One strain constitutively expressed the antibiotic resistance gene

(and thus had a fixed growth rate) while a photophilic (i.e., thrives in

light) strain carried a light-inducible resistance gene, allowing dose

response of its growth rate to blue light, which acted as the input to

this system. Similarly, the output was measured through automated

flow cytometry, with either presence or absence of the mVenus

fluorescent reporter. This system employed PID control andwas able

to accurately drive the composition to static and dynamic references,

steering the co-culture to arbitrary population ratios over a long

period of time. While PID can be implemented without a model of

the system, this work also demonstrated thatmore robust control can

be obtained by optimising PIDparameters through the use ofmodels.

Conclusion

Cybergenetic control of protein expression has provided

researchers with many insights into gene networks and regulatory

dynamics (Perrino et al., 2019). Similarly, there is much to be gained

if microbial communities were controlled and probed in the same

manner, taking advantage of computers to perform tasks that biology

cannot efficiently perform. A wide variety of methods for actuating

species in a community through direct and indirect means as well as

methods of measuring community composition already exist.

However, since communities used in different applications differ

significantly in species and context (e.g., number of species,

environment), there is no optimal one-size-fits-all approach to

controlling community composition. Therefore future work will
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likely include combining existing methods of control input and

output in novel approaches in addition to refining current

strategies. Continued improvement of input (e.g., development of

more orthogonal inducers) and output (e.g., decreasing sequencing

costs or improving flow cytometry accuracy) methods are also

enabling technologies that will advance the field. Outside of the

cybergenetic strategy, there is also the need to demonstrate robust

cybergenetic control of more than two species, taking advantage of

the fact that in silico control circuity can compute the complex logic

needed to control larger communities. As the technology matures,

there is also significant potential in moving past the proof-of-concept

stage and applying demonstrated or novel setups to biotechnological

or ecological applications.

Real-time monitoring and cybergenetic control of microbial

communities will enable the adoption of defined communities in

place of monocultures in many applications, establishing a new

paradigm for bioproduction and bioremediation through

synthetic communities. Its application towards complex

natural communities will also enable a better understanding of

their population dynamics and potentially provide a measure of

control over these important systems that are central to fields

ranging from biomedicine to agriculture.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it for

publication.

Funding

This work was supported by the Engineering and

Physical Science Research Council (Grant Number EP/

W000326/1).

Acknowledgments

Thanks to Olivia Gallupova for her comments on the

manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Adams, B. L. (2016). The next generation of synthetic biology chassis: Moving
synthetic biology from the laboratory to the field. ACS Synth. Biol. 5 (12),
1328–1330. Available at:. doi:10.1021/acssynbio.6b00256

Aditya, C., Bertaux, F., Batt, G., and Ruess, J. (2021). A light tunable
differentiation system for the creation and control of consortia in yeast. Nat.
Commun. 12 (1), 5829. Available at:. doi:10.1038/s41467-021-26129-7

Angulo, M. T., Moog, C. H., and Liu, Y.-Y. (2019). A theoretical framework for
controlling complex microbial communities. Nat. Commun. 10, 1045. Available at:.
doi:10.1038/s41467-019-08890-y

Boon, B., Kerckhof, F. M., Vandamme, P., De Baets, B., and Boon, N. (2018). Flow
cytometric fingerprinting for microbial strain discrimination and physiological
characterization. Cytom. A 93 (2), 201–212. Available at:. doi:10.1002/CYTO.A.23302

Balagaddé, F. K., Song, H., Ozaki, J., Collins, C. H., Barnet, M., Arnold, F. H., et al.
(2008). A synthetic Escherichia coli predator–prey ecosystem.Mol. Syst. Biol. 4, 187.
Available at:. doi:10.1038/msb.2008.24

Baumschlager, A., Aoki, S. K., and Khammash, M. (2017). Dynamic blue
light-inducible T7 RNA polymerases (Opto-T7RNAPs) for precise
spatiotemporal gene expression control. ACS Synth. Biol. 6 (11),
2157–2167. Available at:. doi:10.1021/acssynbio.7b00169

Baumschlager, A., and Khammash, M. (2021). Synthetic biological approaches
for optogenetics and tools for transcriptional light-control in bacteria. Adv. Biol. 5
(5), 2000256. Available at:. doi:10.1002/adbi.202000256

Baumschlager, A., Rullan, M., and Khammash, M. (2020). Exploiting natural
chemical photosensitivity of anhydrotetracycline and tetracycline for dynamic and
setpoint chemo-optogenetic control. Nat. Commun. 11 (1), 3834. Available at:.
doi:10.1038/s41467-020-17677-5

Bell, T. (2019). Next-generation experiments linking community structure and
ecosystem functioning. Environ. Microbiol. Rep. 11 (1), 20–22. Available at:. doi:10.
1111/1758-2229.12711

Benítez-Páez, A., Portune, K. J., and Sanz, Y. (2016). Species-level resolution of
16S rRNA gene amplicons sequenced through the MinIONTM portable nanopore
sequencer. GigaScience 5, 4. Available at:. doi:10.1186/s13742-016-0111-z

Bertaux, F., Sosa-Carrillo, S., Gross, V., Fraisse, A., Aditya, C., Furstenheim, M.,
et al. (2022). Enhancing bioreactor arrays for automatedmeasurements and reactive
control with ReacSight. Nat. Commun. 13 (1), 3363. Available at:. doi:10.1038/
s41467-022-31033-9

Bhatta, H., Goldys, E. M., and Learmonth, R. P. (2006). Use of fluorescence
spectroscopy to differentiate yeast and bacterial cells.Appl. Microbiol. Biotechnol. 71
(1), 121–126. Available at:. doi:10.1007/s00253-005-0309-y

Boddy, L., Morris, C., Wilkins, M., Al-Haddad, L., Tarran, G., Jonker, R., et al.
(2000). Identification of 72 phytoplankton species by radial basis function neural
network analysis of flow cytometric data.Mar. Ecol. Prog. Ser. 195, 47–59. Available
at:. doi:10.3354/meps195047

Borkowski, O., Ceroni, F., Stan, G. B., and Ellis, T. (2016). Overloaded and
stressed: Whole-cell considerations for bacterial synthetic biology. Curr. Opin.
Microbiol. 33, 123–130. Available at:. doi:10.1016/j.mib.2016.07.009

Bourdeau, R. W., Lee-Gosselin, A., Lakshmanan, A., Farhadi, A., Kumar, S. R.,
Nety, S. P., et al. (2018). Acoustic reporter genes for noninvasive imaging of
microorganisms in mammalian hosts. Nature 553 (7686), 86–90. Available at:.
doi:10.1038/nature25021

Burmeister, A., Akhtar, Q., Hollmann, L., Tenhaef, N., Hilgers, F., Hogenkamp,
F., et al. (2021). (Optochemical) control of synthetic microbial coculture

Frontiers in Bioengineering and Biotechnology frontiersin.org12

Lee and Steel 10.3389/fbioe.2022.957140

https://doi.org/10.1021/acssynbio.6b00256
https://doi.org/10.1038/s41467-021-26129-7
https://doi.org/10.1038/s41467-019-08890-y
https://doi.org/10.1002/CYTO.A.23302
https://doi.org/10.1038/msb.2008.24
https://doi.org/10.1021/acssynbio.7b00169
https://doi.org/10.1002/adbi.202000256
https://doi.org/10.1038/s41467-020-17677-5
https://doi.org/10.1111/1758-2229.12711
https://doi.org/10.1111/1758-2229.12711
https://doi.org/10.1186/s13742-016-0111-z
https://doi.org/10.1038/s41467-022-31033-9
https://doi.org/10.1038/s41467-022-31033-9
https://doi.org/10.1007/s00253-005-0309-y
https://doi.org/10.3354/meps195047
https://doi.org/10.1016/j.mib.2016.07.009
https://doi.org/10.1038/nature25021
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.957140


interactions on a microcolony level. ACS Synth. Biol. 10 (6), 1308–1319. Available
at:. doi:10.1021/acssynbio.0c00382

Burmeister, A., and Grünberger, A. (2020). Microfluidic cultivation and analysis
tools for interaction studies of microbial co-cultures. Curr. Opin. Biotechnol. 62,
106–115. Available at:. doi:10.1016/j.copbio.2019.09.001

Carrasco-López, C., Garcia-Echauri, S. A., Kichuk, T., and Avalos, J. L. (2020).
Optogenetics and biosensors set the stage for metabolic cybergenetics. Curr. Opin.
Biotechnol. 65, 296–309. Available at:. doi:10.1016/j.copbio.2020.07.012

Chait, R., Ruess, J., Bergmiller, T., Tkacik, G., and Guet, C. C. (2017). Shaping
bacterial population behavior through computer-interfaced control of individual
cells. Nat. Commun. 8 (1), 1535. Available at:. doi:10.1038/s41467-017-01683-1

Chen, Y., Kim, J. K., Hirning, A. J., Josic, K., and Bennett, M. R. (2015). Emergent
genetic oscillations in a synthetic microbial consortium. Science 349 (6251),
986–989. Available at:. doi:10.1126/science.aaa3794

Connors, B. M., Ertmer, S., Clark, R. L., and Thompson, J. (2022). Model-guided
design of the diversity of a synthetic human gut community. bioRxiv, 2022. Available
at:. doi:10.1101/2022.03.14.484355

Dal Co, A., van Vliet, S., Kiviet, D. J., Schlegel, S., and Ackermann, M. (2020).
Short-range interactions govern the dynamics and functions of microbial
communities. Nat. Ecol. Evol. 4 (3), 366–375. Available at:. doi:10.1038/s41559-
019-1080-2

Dinh, C. V., Chen, X., and Prather, K. L. J. (2020). Development of a quorum-
sensing based circuit for control of coculture population composition in a
naringenin production system. ACS Synth. Biol. 9 (3), 590–597. Available at:.
doi:10.1021/acssynbio.9b00451

Edwards, A. L., Sangurdekar, D. P., Jeong, K. S., Khodursky, A. B., and Rybenkov,
V. V. (2013). Transient growth arrest in Escherichia coli induced by chromosome
condensation. PLOS ONE 8 (12), e84027. Available at:. doi:10.1371/journal.pone.
0084027

Fedorec, A. J. H., Karkaria, B. D., Sulu, M., and Barnes, C. P. (2021). Single strain
control of microbial consortia. Nat. Commun. 12 (1), 1977. Available at:. doi:10.
1038/s41467-021-22240-x

Fiore, D., Rossa, F. D., Guarino, A., and Bernardo, M. d. (2022). Feedback
ratiometric control of two microbial populations in a single chemostat. IEEE
Control Syst. Lett. 6, 800–805. Available at:. doi:10.1109/LCSYS.2021.3086234

Fiore, G., Perrino, G., di Bernardo, M., and di Bernardo, D. (2016). In vivo real-
time control of gene expression: A comparative analysis of feedback control
strategies in yeast. ACS Synth. Biol. 5 (2), 154–162. Available at:. doi:10.1021/
acssynbio.5b00135

Fontanarrosa, P., Doosthosseini, H., Borujeni, A. E., Dorfan, Y., Voigt, C. A., and
Myers, C. (2020). Genetic circuit dynamics: Hazard and glitch analysis. ACS Synth.
Biol. 9 (9), 2324–2338. Available at:. doi:10.1021/acssynbio.0c00055

Foucault, M.-L., Thomas, L., Goussard, S., Branchini, B. R., and Grillot-Courvalin,
C. (2010). In vivo bioluminescence imaging for the study of intestinal colonization
by Escherichia coli in mice. Appl. Environ. Microbiol. 76 (1), 264–274. Available at:.
doi:10.1128/AEM.01686-09

Giana, H. E., Silveira Jr., L., Zangaro, R. A., and Pacheco, M. T. T. (2003). Rapid
identification of bacterial species by fluorescence spectroscopy and classification
through principal components analysis. J. Fluoresc. 13 (6), 489–493. Available at:.
doi:10.1023/B:JOFL.0000008059.74052.3c

Grandel, N. E., Reyes Gamas, K., and Bennett, M. R. (2021) Control of synthetic
microbial consortia in time, space, and composition’, Trends in Microbiology
[Preprint]. Available at: doi:10.1016/J.TIM.2021.04.001

Guarino, A., Shannon, B., Marucci, L., and Grierson, C. (2019) A low-cost, open-
source Turbidostat design for in-vivo control experiments in Synthetic Biology.
Available at:. doi:10.1016/j.ifacol.2019.12.265

Gutiérrez, J., Kumar, S., and Khammash, M. (2022). Dynamic cybergenetic
control of bacterial co-culture composition via optogenetic feedback. Nat.
Commun. 13 (1), 4808. Available at:. doi:10.1038/s41467-022-32392-z

Hirose, Y., Shimada, T., Narikawa, R., Katayama, M., and Ikeuchi, M. (2008).
Cyanobacteriochrome CcaS is the green light receptor that induces the expression of
phycobilisome linker protein. Proc. Natl. Acad. Sci. U. S. A. 105 (28), 9528–9533.
Available at:. doi:10.1073/pnas.0801826105

Hoynes-O’Connor, A., Hinman, K., Kirchner, L., and Moon, T. S. (2015). De
novo design of heat-repressible RNA thermosensors in E. coli. Nucleic Acids Res. 43
(12), 6166–6179. Available at:. doi:10.1093/nar/gkv499

Hurt, R. C., Buss, M. T., Duan, M., Wong, K., and You, M. Y. (2021). Genomically
mined acoustic reporter genes enable on-demand in vivo monitoring of tumor-
homing bacteria. bioRxiv, 2021. Available at:. doi:10.1101/2021.04.26.441537

Izard, J., Gomez Balderas, C. D., Ropers, D., Lacour, S., Song, X., Yang, Y., et al.
(2015). A synthetic growth switch based on controlled expression of RNA
polymerase. Mol. Syst. Biol. 11 (11), 840. Available at:. doi:10.15252/msb.20156382

Jian, C., Luukkonen, P., Yki-Jarvinen, H., Salonen, A., and Korpela, K. (2020).
Quantitative PCR provides a simple and accessible method for quantitative
microbiota profiling. PLOS ONE 15 (1), e0227285. Available at:. doi:10.1371/
journal.pone.0227285

Jiang, W., et al. (2022) Construction of synthetic microbial ecosystems and the
regulation of population proportion’, ACS synthetic biology [preprint]. Available at:.
doi:10.1021/acssynbio.1c00354

Jiang, W., He, X., Luo, Y., Mu, Y., Gu, F., Liang, Q., et al. (2020). Two completely
orthogonal quorum sensing systems with self-produced autoinducers enable
automatic delayed cascade control. ACS Synth. Biol. 9 (9), 2588–2599. Available
at:. doi:10.1021/acssynbio.0c00370

Johnson, J. S., Spakowicz, D. J., Hong, B. Y., Petersen, L. M., Demkowicz, P., Chen,
L., et al. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level
microbiome analysis.Nat. Commun. 10 (1), 5029. Available at:. doi:10.1038/s41467-
019-13036-1

Jones, J. A., Belzer, C., Pellis, L., and Keijser, B. J. (2017). Complete biosynthesis of
anthocyanins using E. coli polycultures. Available at:. doi:10.1128/mBio

Kleyer, H., Tecon, R., and Or, D. (2021). Bacterial community response to species
overrepresentation or omission is strongly influenced by life in spatially structured
habitats. bioRxiv, 2021. Available at:. doi:10.1101/2021.12.01.470875

Koch, C., Gunther, S., Desta, A. F., Hubschmann, T., and Muller, S. (2013).
Cytometric fingerprinting for analyzing microbial intracommunity structure
variation and identifying subcommunity function. Nat. Protoc. 8 (1), 190–202.
Available at:. doi:10.1038/nprot.2012.149

Kolar, K., Knobloch, C., Stork, H., Znidaric, M., andWeber, W. (2018). OptoBase:
A web platform for molecular optogenetics. ACS Synth. Biol. 7 (7), 1825–1828.
Available at:. doi:10.1021/acssynbio.8b00120

Kong, W., Meldgin, D. R., Collins, J. J., and Lu, T. (2018). Designing microbial
consortia with defined social interactions. Nat. Chem. Biol. 14 (8), 821–829.
Available at:. doi:10.1038/s41589-018-0091-7

Konstantinidis, D., Pereira, F., Geissen, E., Grkovska, K., Kafkia, E., Jouhten, P.,
et al. (2021). Adaptive laboratory evolution of microbial co-cultures for improved
metabolite secretion.Mol. Syst. Biol. 17 (8), e10189. Available at:. doi:10.15252/msb.
202010189

Kozlowski, M. T., Silverman, B. R., Johnstone, C. P., and Tirrell, D. A. (2021).
Genetically programmable microbial assembly. ACS Synth. Biol. 25, 1351–1359.
Available at:. doi:10.1021/acssynbio.0c00616

Krishna Kumar, R., Meiller-Legrand, T. A., and Alcinesio, A. (2021). Droplet
printing reveals the importance of micron-scale structure for bacterial ecology.
Available at:. doi:10.1038/s41467-021-20996-w

Kumar, S., Rullan, M., and Khammash, M. (2021). Rapid prototyping and design
of cybergenetic single-cell controllers. Nat. Commun. 12 (1), 5651. Available at:.
doi:10.1038/s41467-021-25754-6

Kusuda, M., Shimizu, H., and Toya, Y. (2021). Reactor control system in bacterial
co-culture based on fluorescent proteins using an Arduino-based home-made
device. Biotechnol. J. 16 (12), 2100169. Available at:. doi:10.1002/biot.202100169

Kylilis, N., Tuza, Z. A., Stan, G. B., and Polizzi, K. M. (2018). Tools for engineering
coordinated system behaviour in synthetic microbial consortia. Nat. Commun. 9
(1), 2677. Available at:. doi:10.1038/s41467-018-05046-2

Lalwani, M. A., Kawabe, H., Mays, R. L., Hoffman, S. M., and Avalos, J. L.
(2021). Optogenetic control of microbial consortia populations for chemical
production. ACS Synth. Biol. 10 (8), 2015–2029. Available at:. doi:10.1021/
acssynbio.1c00182

Lambrecht, J., Schattenberg, F., Harms, H., and Mueller, S. (2018).
Characterizing microbiome dynamics - flow cytometry based workflows
from pure cultures to natural communities. J. Vis. Exp. (137), 58033.
Available at:. doi:10.3791/58033

Latorre-Pérez, A., Pascual, J., Porcar, M., and Vilanova, C. (2020). A lab in the
field: Applications of real-time, in situ metagenomic sequencing. Biol. Methods
Protoc. 5 (1), bpaa016. Available at:. doi:10.1093/biomethods/bpaa016

Levskaya, A., Chevalier, A. A., Tabor, J. J., Simpson, Z. B., Lavery, L. A., Levy, M.,
et al. (2005). Engineering Escherichia coli to see light. Nature 438 (7067), 441–442.
Available at:. doi:10.1038/nature04405

Li, X., Zhang, C., Xu, X., Miao, J., Yao, J., Liu, R., et al. (2020). A single-component
light sensor system allows highly tunable and direct activation of gene expression in
bacterial cells. Nucleic Acids Res. 48 (6), e33. Available at:. doi:10.1093/nar/gkaa044

Lindner, F., and Diepold, A. (2022). Optogenetics in bacteria – applications and
opportunities. FEMS Microbiol. Rev. 46 (2), fuab055. fuab055. Available at:. doi:10.
1093/femsre/fuab055

Liu, F., Mao, J., Lu, T., and Hua, Q. (2019). Synthetic, context-dependent
microbial consortium of predator and prey. ACS Synth. Biol. 8 (8), 1713–1722.
Available at:. doi:10.1021/acssynbio.9b00110

Frontiers in Bioengineering and Biotechnology frontiersin.org13

Lee and Steel 10.3389/fbioe.2022.957140

https://doi.org/10.1021/acssynbio.0c00382
https://doi.org/10.1016/j.copbio.2019.09.001
https://doi.org/10.1016/j.copbio.2020.07.012
https://doi.org/10.1038/s41467-017-01683-1
https://doi.org/10.1126/science.aaa3794
https://doi.org/10.1101/2022.03.14.484355
https://doi.org/10.1038/s41559-019-1080-2
https://doi.org/10.1038/s41559-019-1080-2
https://doi.org/10.1021/acssynbio.9b00451
https://doi.org/10.1371/journal.pone.0084027
https://doi.org/10.1371/journal.pone.0084027
https://doi.org/10.1038/s41467-021-22240-x
https://doi.org/10.1038/s41467-021-22240-x
https://doi.org/10.1109/LCSYS.2021.3086234
https://doi.org/10.1021/acssynbio.5b00135
https://doi.org/10.1021/acssynbio.5b00135
https://doi.org/10.1021/acssynbio.0c00055
https://doi.org/10.1128/AEM.01686-09
https://doi.org/10.1023/B:JOFL.0000008059.74052.3c
https://doi.org/10.1016/J.TIM.2021.04.001
https://doi.org/10.1016/j.ifacol.2019.12.265
https://doi.org/10.1038/s41467-022-32392-z
https://doi.org/10.1073/pnas.0801826105
https://doi.org/10.1093/nar/gkv499
https://doi.org/10.1101/2021.04.26.441537
https://doi.org/10.15252/msb.20156382
https://doi.org/10.1371/journal.pone.0227285
https://doi.org/10.1371/journal.pone.0227285
https://doi.org/10.1021/acssynbio.1c00354
https://doi.org/10.1021/acssynbio.0c00370
https://doi.org/10.1038/s41467-019-13036-1
https://doi.org/10.1038/s41467-019-13036-1
https://doi.org/10.1128/mBio
https://doi.org/10.1101/2021.12.01.470875
https://doi.org/10.1038/nprot.2012.149
https://doi.org/10.1021/acssynbio.8b00120
https://doi.org/10.1038/s41589-018-0091-7
https://doi.org/10.15252/msb.202010189
https://doi.org/10.15252/msb.202010189
https://doi.org/10.1021/acssynbio.0c00616
https://doi.org/10.1038/s41467-021-20996-w
https://doi.org/10.1038/s41467-021-25754-6
https://doi.org/10.1002/biot.202100169
https://doi.org/10.1038/s41467-018-05046-2
https://doi.org/10.1021/acssynbio.1c00182
https://doi.org/10.1021/acssynbio.1c00182
https://doi.org/10.3791/58033
https://doi.org/10.1093/biomethods/bpaa016
https://doi.org/10.1038/nature04405
https://doi.org/10.1093/nar/gkaa044
https://doi.org/10.1093/femsre/fuab055
https://doi.org/10.1093/femsre/fuab055
https://doi.org/10.1021/acssynbio.9b00110
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.957140


Lu, T. K., and Collins, J. J. (2007). Dispersing biofilms with engineered enzymatic
bacteriophage. Proc. Natl. Acad. Sci. U. S. A. 104 (27), 11197–11202. Available at:.
doi:10.1073/pnas.0704624104

Ludwig, J., zu Siederdissen, C. H., Liu, Z., Stadler, P. F., and Muller, S. (2019).
flowEMMi: an automated model-based clustering tool for microbial cytometric
data. BMC Bioinforma. 20 (1), 643. Available at:. doi:10.1186/s12859-019-3152-3

Lugagne, J.-B., and Dunlop, M. J. (2019). Cell-machine interfaces for
characterizing gene regulatory network dynamics. Curr. Opin. Syst. Biol. 14,
1–8. Available at:. doi:10.1016/j.coisb.2019.01.001

Lugagne, J.-B., Sosa Carrillo, S., Kirch, M., Kohler, A., Batt, G., and Hersen, P.
(2017). Balancing a genetic toggle switch by real-time feedback control and periodic
forcing. Nat. Commun. 8 (1), 1671. Available at:. doi:10.1038/s41467-017-01498-0

Martinez, J. A., Delvenne, M., Henrion, L., and Moreno, F. (2022). Controlling
microbial co-culture based on substrate pulsing can lead to stability through
differential fitness advantages. bioRxiv, 2022. Available at:. doi:10.1101/2022.02.
18.480836

McCarty, N. S., and Ledesma-Amaro, R. (2019). Synthetic biology tools to
engineer microbial communities for biotechnology. Trends Biotechnol. 37 (2),
181–197. Available at:. doi:10.1016/J.TIBTECH.2018.11.002

Mee, M. T., Collins, J. J., Church, G. M., and Wang, H. H. (2014). Syntrophic
exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. U. S. A. 111
(20), E2149–E2156. Available at:. doi:10.1073/pnas.1405641111

Melendez, J., Patel, M., Oakes, B. L., Xu, P., Morton, P., and McClean, M. N.
(2014). Real-time optogenetic control of intracellular protein concentration in
microbial cell cultures. Integr. Biol. 6 (3), 366–372. Available at:. doi:10.1039/
c3ib40102b

Menolascina, F., Fiore, G., Orabona, E., De Stefano, L., Ferry, M., Hasty, J., et al.
(2014). In-vivo real-time control of protein expression from endogenous and
synthetic gene networks. PLoS Comput. Biol. 10 (5), e1003625. Available at:.
doi:10.1371/journal.pcbi.1003625

Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J., and Voigt, C. A. (2019).
Escherichia coli “Marionette” strains with 12 highly optimized small-molecule
sensors. Nat. Chem. Biol. 15 (2), 196–204. Available at:. doi:10.1038/s41589-018-
0168-3

Miano, A., Liao, M. J., and Hasty, J. (2020). Inducible cell-to-cell signaling for
tunable dynamics in microbial communities. Nat. Commun. 11 (1), 1193. Available
at:. doi:10.1038/s41467-020-15056-8

Milias-Argeitis, A., Rullan, M., Aoki, S. K., Buchmann, P., and Khammash, M.
(2016). Automated optogenetic feedback control for precise and robust regulation
of gene expression and cell growth.Nat. Commun. 7 (1), 12546. Available at:. doi:10.
1038/ncomms12546

Milias-Argeitis, A., Summers, S., Stewart-Ornstein, J., Zuleta, I., Pincus, D., El-
Samad, H., et al. (2011). In silico feedback for in vivo regulation of a gene
expression circuit. Nat. Biotechnol. 29 (12), 1114–1116. Available at:. doi:10.
1038/nbt.2018

Möglich, A., Ayers, R. A., andMoffat, K. (2009). Design and signaling mechanism
of light-regulated histidine kinases. J. Mol. Biol. 385 (5), 1433–1444. Available at:.
doi:10.1016/j.jmb.2008.12.017

Morari, M., and Lee, H., (1999). Model predictive control: Past, present and
future. Comput. Chem. Eng. 23 (4), 667–682. Available at:. doi:10.1016/S0098-
1354(98)00301-9

Nielsen, A. A. K., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski,
E. A., et al. (2016). Genetic circuit design automation. Science 352 (6281), aac7341.
Available at:. doi:10.1126/science.aac7341

Özel Duygan, B. D., Hadadi, N., Babu, A. F., Seyfried, M., and van der Meer, J. R.
(2020). Rapid detection of microbiota cell type diversity using machine-learned
classification of flow cytometry data. Commun. Biol. 3:1, 3 (1), 1–13. doi:10.1038/
s42003-020-1106-y

Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C., and Waldo, G. S.
(2006). Engineering and characterization of a superfolder green fluorescent protein.
Nat. Biotechnol. 24 (1), 79–88. Available at:. doi:10.1038/nbt1172

Pedone, E., de Cesare, I., Zamora-Chimal, C. G., Haener, D., Postiglione, L., La
Regina, A., et al. (2021). Cheetah: A computational toolkit for cybergenetic control.
ACS Synth. Biol. 10 (5), 979–989. Available at:. doi:10.1021/acssynbio.0c00463

Perrino, G., Hadjimitsis, A., Ledesma-Amaro, R., and Stan, G. B. (2021). Control
engineering and synthetic biology: Working in synergy for the analysis and control
of microbial systems. Curr. Opin. Microbiol. 62, 68–75. Available at:. doi:10.1016/J.
MIB.2021.05.004

Perrino, G., Wilson, C., Santorelli, M., and di Bernardo, D. (2019). Quantitative
characterization of α-synuclein aggregation in living cells through automated
microfluidics feedback control. Cell Rep. 27 (3), 916–927.e5. e5. Available at:.
doi:10.1016/j.celrep.2019.03.081

Piraner, D. I., Abedi, M. H., Moser, B. A., Lee-Gosselin, A., and Shapiro, M. G.
(2017). Tunable thermal bioswitches for in vivo control of microbial therapeutics.
Nat. Chem. Biol. 13 (1), 75–80. Available at:. doi:10.1038/nchembio.2233

Piraner, D. I., Wu, Y., and Shapiro, M. G. (2019). Modular thermal control of
protein dimerization. ACS Synth. Biol. 8 (10), 2256–2262. Available at:. doi:10.1021/
acssynbio.9b00275

Props, R., Monsieurs, P., Mysara, M., Clement, L., and Boon, N. (2016).
Measuring the biodiversity of microbial communities by flow cytometry.
Methods Ecol. Evol. 7 (11), 1376–1385. Available at:. doi:10.1111/2041-210X.12607

Ronda, C., andWang, H. H. (2022). Engineering temporal dynamics in microbial
communities. Curr. Opin. Microbiol. 65, 47–55. Available at:. doi:10.1016/j.mib.
2021.10.009

Rubin, B. E., Diamond, S., Cress, B. F., Crits-Christoph, A., Lou, Y. C., Borges, A.
L., et al. (2022). Species- and site-specific genome editing in complex bacterial
communities. Nat. Microbiol. 7 (1), 34–47. Available at:. doi:10.1038/s41564-021-
01014-7

Rullan, M., Benzinger, D., Schmidt, G. W., Milias-Argeitis, A., and Khammash,
M. (2018). An optogenetic platform for real-time, single-cell interrogation of
stochastic transcriptional regulation. Mol. Cell 70 (4), 745–756.e6. e6. Available
at:. doi:10.1016/j.molcel.2018.04.012

Salma, A., Abdallah, R., Fourcade, F., Amrane, A., and Djelal, H. (2021). A new
approach to produce succinic acid through a Co-culture system. Appl. Biochem.
Biotechnol. 193 (9), 2872–2892. Available at:. doi:10.1007/s12010-021-03572-2

Salzano, D., Fiore, D., and Bernardodi, M. (2021). Controlling reversible cell
differentiation for labor division in microbial consortia. bioRxiv, 2021. Available at:.
doi:10.1101/2021.08.03.454926

Sawyer, D. P., Bar-Zion, A., Farhadi, A., Shivaei, S., Ling, B., Lee-Gosselin, A.,
et al. (2021). Ultrasensitive ultrasound imaging of gene expression with signal
unmixing. Nat. Methods 18 (8), 945–952. Available at:. doi:10.1038/s41592-021-
01229-w

Scott, S. R., Din, M. O., Bittihn, P., Xiong, L., Tsimring, L. S., and Hasty, J. (2017).
A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-
regulated lysis. Nat. Microbiol. (828), 17083–17089. Available at:. doi:10.1038/
nmicrobiol.2017.83

Scott, S. R., and Hasty, J. (2016). Quorum sensing communication modules for
microbial consortia. ACS Synth. Biol. 5 (9), 969–977. Available at:. doi:10.1021/
acssynbio.5b00286

Shannon, B., Zamora-Chimal, C. G., Postiglione, L., Salzano, D., Grierson, C. S.,
Marucci, L., et al. (2020). In vivo feedback control of an antithetic molecular-
titration motif in Escherichia coli using microfluidics. ACS Synth. Biol. 9 (10),
2617–2624. Available at:. doi:10.1021/acssynbio.0c00105

Sheets, M. B., and Dunlop, M. J. (2022). An optogenetic toolkit for light-inducible
antibiotic resistance. bioRxiv, 2022. Available at:. doi:10.1101/2022.06.10.495621

Shou, W., Ram, S., and Vilar, J. M. G. (2007). Synthetic cooperation in engineered
yeast populations. Proc. Natl. Acad. Sci. U. S. A. 104 (6), 1877–1882. Available at:.
doi:10.1073/pnas.0610575104

Sorbara, M. T., and Pamer, E. G. (2022). Microbiome-based therapeutics. Nat.
Rev. Microbiol. 20, 365–380. Available at:. doi:10.1038/s41579-021-00667-9

Steel, H., Habgood, R., Kelly, C. L., and Papachristodoulou, A. (2020). In situ
characterisation and manipulation of biological systems with Chi.Bio. PLoS Biol. 18
(7), e3000794. Available at:. doi:10.1371/JOURNAL.PBIO.3000794

Stenuit, B., and Agathos, S. N. (2015). Deciphering microbial community
robustness through synthetic ecology and molecular systems synecology. Curr.
Opin. Biotechnol. 33, 305–317. Available at:. doi:10.1016/j.copbio.2015.03.012

Stephens, K., Pozo, M., Tsao, C. Y., Hauk, P., and Bentley, W. E. (2019). Bacterial
co-culture with cell signaling translator and growth controller modules for
autonomously regulated culture composition. Nat. Commun. 10 (1), 4129.
Available at:. doi:10.1038/s41467-019-12027-6

Storch, M., Casini, A., Mackrow, B., Ellis, T., and Baldwin, G. S. (2017). “Basic: A
simple and accurate modular DNA assembly method,” in Synthetic DNA: Methods
and protocols. Editor R. A. Hughes (New York, NY: Springer), 79–91. Available at:.
doi:10.1007/978-1-4939-6343-0_6

Takahashi, M. K., Tan, X., Dy, A. J., Braff, D., Akana, R. T., Furuta, Y., et al.
(2018). A low-cost paper-based synthetic biology platform for analyzing gut
microbiota and host biomarkers. Nat. Commun. 9 (1), 3347. Available at:.
doi:10.1038/s41467-018-05864-4

Tanaskovic, M., Fagiano, L., Smith, R., and Morari, M. (2013). Adaptive model
predictive control for constrained MIMO systems. IFAC Proc. Vol. 46 (11), 39–44.
Available at. doi:10.3182/20130703-3-FR-4038.00083

Terrell, J. L., Tschirhart, T., Jahnke, J. P., Stephens, K., Liu, Y., Dong, H., et al.
(2021). Bioelectronic control of a microbial community using surface-assembled

Frontiers in Bioengineering and Biotechnology frontiersin.org14

Lee and Steel 10.3389/fbioe.2022.957140

https://doi.org/10.1073/pnas.0704624104
https://doi.org/10.1186/s12859-019-3152-3
https://doi.org/10.1016/j.coisb.2019.01.001
https://doi.org/10.1038/s41467-017-01498-0
https://doi.org/10.1101/2022.02.18.480836
https://doi.org/10.1101/2022.02.18.480836
https://doi.org/10.1016/J.TIBTECH.2018.11.002
https://doi.org/10.1073/pnas.1405641111
https://doi.org/10.1039/c3ib40102b
https://doi.org/10.1039/c3ib40102b
https://doi.org/10.1371/journal.pcbi.1003625
https://doi.org/10.1038/s41589-018-0168-3
https://doi.org/10.1038/s41589-018-0168-3
https://doi.org/10.1038/s41467-020-15056-8
https://doi.org/10.1038/ncomms12546
https://doi.org/10.1038/ncomms12546
https://doi.org/10.1038/nbt.2018
https://doi.org/10.1038/nbt.2018
https://doi.org/10.1016/j.jmb.2008.12.017
https://doi.org/10.1016/S0098-1354(98)00301-9
https://doi.org/10.1016/S0098-1354(98)00301-9
https://doi.org/10.1126/science.aac7341
https://doi.org/10.1038/s42003-020-1106-y
https://doi.org/10.1038/s42003-020-1106-y
https://doi.org/10.1038/nbt1172
https://doi.org/10.1021/acssynbio.0c00463
https://doi.org/10.1016/J.MIB.2021.05.004
https://doi.org/10.1016/J.MIB.2021.05.004
https://doi.org/10.1016/j.celrep.2019.03.081
https://doi.org/10.1038/nchembio.2233
https://doi.org/10.1021/acssynbio.9b00275
https://doi.org/10.1021/acssynbio.9b00275
https://doi.org/10.1111/2041-210X.12607
https://doi.org/10.1016/j.mib.2021.10.009
https://doi.org/10.1016/j.mib.2021.10.009
https://doi.org/10.1038/s41564-021-01014-7
https://doi.org/10.1038/s41564-021-01014-7
https://doi.org/10.1016/j.molcel.2018.04.012
https://doi.org/10.1007/s12010-021-03572-2
https://doi.org/10.1101/2021.08.03.454926
https://doi.org/10.1038/s41592-021-01229-w
https://doi.org/10.1038/s41592-021-01229-w
https://doi.org/10.1038/nmicrobiol.2017.83
https://doi.org/10.1038/nmicrobiol.2017.83
https://doi.org/10.1021/acssynbio.5b00286
https://doi.org/10.1021/acssynbio.5b00286
https://doi.org/10.1021/acssynbio.0c00105
https://doi.org/10.1101/2022.06.10.495621
https://doi.org/10.1073/pnas.0610575104
https://doi.org/10.1038/s41579-021-00667-9
https://doi.org/10.1371/JOURNAL.PBIO.3000794
https://doi.org/10.1016/j.copbio.2015.03.012
https://doi.org/10.1038/s41467-019-12027-6
https://doi.org/10.1007/978-1-4939-6343-0_6
https://doi.org/10.1038/s41467-018-05864-4
https://doi.org/10.3182/20130703-3-FR-4038.00083
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.957140


electrogenetic cells to route signals.Nat. Nanotechnol. 16 (6), 688–697. Available at:.
doi:10.1038/s41565-021-00878-4

Timmermans, M. L., Picott, K. J., Ucciferri, L., and Ross, A. C. (2018). Culturing
marine bacteria from the genus Pseudoalteromonas on a cotton scaffold alters
secondary metabolite production. MicrobiologyOpen 8 (5), e00724. Available at:.
doi:10.1002/mbo3.724

Toettcher, J. E., Gong, D., Lim, W. A., and Weiner, O. D. (2011). Light-based
feedback for controlling intracellular signaling dynamics. Nat. Methods 8 (10),
837–839. Available at:. doi:10.1038/nmeth.1700

Treloar, N. J., Fedorec, A. J. H., and Ingalls, B. (2020).Deep reinforcement learning
for the control of microbial co-cultures in bioreactors. Available at:. doi:10.1371/
journal.pcbi.1007783

Tsoi, R., Wu, F., Zhang, C., Bewick, S., Karig, D., and You, L. (2018). Metabolic
division of labor in microbial systems. Proc. Natl. Acad. Sci. U. S. A. 115 (10),
2526–2531. Available at:. doi:10.1073/pnas.1716888115

Uhlendorf, J., Miermont, A., Delaveau, T., Charvin, G., Fages, F., Bottani, S., et al.
(2012). Long-term model predictive control of gene expression at the population
and single-cell levels. Proc. Natl. Acad. Sci. U. S. A. 109 (35), 14271–14276. Available
at:. doi:10.1073/pnas.1206810109

Valdez-Cruz, N. A., Caspeta, L., Perez, N. O., Ramirez, O. T., and Trujillo-Roldan,
M. A. (2010). Production of recombinant proteins in E. coli by the heat inducible
expression system based on the phage lambda pL and/or pR promoters.Microb. Cell
Fact. 9 (1), 18. Available at:. doi:10.1186/1475-2859-9-18

van der Lelie, D., Oka, A., Taghavi, S., Umeno, J., Fan, T. J., Merrell, K. E., et al.
(2021). Rationally designed bacterial consortia to treat chronic immune-mediated
colitis and restore intestinal homeostasis. Nat. Commun. (1121), 3105–3117.
Available at:. doi:10.1038/s41467-021-23460-x

Vasina, J. A., Peterson, M. S., and Baneyx, F. (1998). Scale-up and optimization of
the low-temperature inducible cspA promoter system. Biotechnol. Prog. 14 (5),
714–721. Available at:. doi:10.1021/bp980061p

Weinstock, M. T., Hesek, E. D., Wilson, C. M., and Gibson, D. G. (2016). Vibrio
natriegens as a fast-growing host for molecular biology. Nat. Methods 13 (10),
849–851. Available at:. doi:10.1038/nmeth.3970

Wong, B. G., Mancuso, C. P., Kiriakov, S., Bashor, C. J., and Khalil, A. S. (2018).
Precise, automated control of conditions for high-throughput growth of yeast and
bacteria with eVOLVER. Nat. Biotechnol. 36 (7), 614–623. Available at:. doi:10.
1038/nbt.4151

Wu, F., Ha, Y., Weiss, A., Wang, M., Letourneau, J., Wang, S., et al. (2022).
Modulation of microbial community dynamics by spatial partitioning. Nat. Chem.
Biol. 18, 394–402. Available at:. doi:10.1038/s41589-021-00961-w

Xavier, J. B., Young, V. B., Skufca, J., Ginty, F., and Testerman, T. (2020). The
cancer microbiome: Distinguishing direct and indirect effects requires a systemic view.
Available at:. doi:10.1016/j.trecan.2020.01.004

Xia, T., Eiteman, M. A., and Altman, E. (2012). Simultaneous utilization of
glucose, xylose and arabinose in the presence of acetate by a consortium of
Escherichia coli strains. Microb. Cell Fact. 11 (1), 77. Available at:. doi:10.1186/
1475-2859-11-77

Yin, C., Casa Vargas, J. M., Schlatter, D. C., Hagerty, C. H., Hulbert, S. H., and
Paulitz, T. C. (2021). Rhizosphere community selection reveals bacteria associated
with reduced root disease. Microbiome 9 (1), 86. Available at:. doi:10.1186/s40168-
020-00997-5

You, L., Cox, R. S., Weiss, R., and Arnold, F. H. (2004). Programmed population
control by cell–cell communication and regulated killing. Nature 428 (6985),
868–871. Available at:. doi:10.1038/nature02491

Zhalnina, K., Louie, K. B., Hao, Z., Mansoori, N., da Rocha, U. N., Shi, S.,
et al. (2018). Dynamic root exudate chemistry and microbial substrate
preferences drive patterns in rhizosphere microbial community
assembly. Nat. Microbiol. 3 (4), 470–480. Available at:. doi:10.1038/s41564-
018-0129-3

Zhang, R., Goetz, H., Melendez-Alvarez, J., Li, J., Ding, T., Wang, X., et al.
(2021). Winner-takes-all resource competition redirects cascading cell fate
transitions. Nat. Commun. 12 (1), 853. Available at:. doi:10.1038/s41467-021-
21125-3

Zheng, Y., Meng, F., Zhu, Z., Wei, W., Sun, Z., Chen, J., et al. (2019). A tight cold-
inducible switch built by coupling thermosensitive transcriptional and proteolytic
regulatory parts. Nucleic Acids Res. 47 (21), e137. Available at:. doi:10.1093/nar/
gkz785

Frontiers in Bioengineering and Biotechnology frontiersin.org15

Lee and Steel 10.3389/fbioe.2022.957140

https://doi.org/10.1038/s41565-021-00878-4
https://doi.org/10.1002/mbo3.724
https://doi.org/10.1038/nmeth.1700
https://doi.org/10.1371/journal.pcbi.1007783
https://doi.org/10.1371/journal.pcbi.1007783
https://doi.org/10.1073/pnas.1716888115
https://doi.org/10.1073/pnas.1206810109
https://doi.org/10.1186/1475-2859-9-18
https://doi.org/10.1038/s41467-021-23460-x
https://doi.org/10.1021/bp980061p
https://doi.org/10.1038/nmeth.3970
https://doi.org/10.1038/nbt.4151
https://doi.org/10.1038/nbt.4151
https://doi.org/10.1038/s41589-021-00961-w
https://doi.org/10.1016/j.trecan.2020.01.004
https://doi.org/10.1186/1475-2859-11-77
https://doi.org/10.1186/1475-2859-11-77
https://doi.org/10.1186/s40168-020-00997-5
https://doi.org/10.1186/s40168-020-00997-5
https://doi.org/10.1038/nature02491
https://doi.org/10.1038/s41564-018-0129-3
https://doi.org/10.1038/s41564-018-0129-3
https://doi.org/10.1038/s41467-021-21125-3
https://doi.org/10.1038/s41467-021-21125-3
https://doi.org/10.1093/nar/gkz785
https://doi.org/10.1093/nar/gkz785
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.957140

	Cybergenetic control of microbial community composition
	Introduction
	Cybergenetic control
	Control input: Actuating species in a community
	Control output: Measuring community composition
	Control algorithms: Designing the control approach
	Cybergenetic community control: Recent examples
	Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


