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Abstract

Regulation by oxygen (O2) in rhizobia is essential for their symbioses with plants and

involves multiple O2 sensing proteins. Three sensors exist in the pea microsymbiont Rhizo-

bium leguminosarum Rlv3841: hFixL, FnrN and NifA. At low O2 concentrations (1%) hFixL

signals via FxkR to induce expression of the FixK transcription factor, which activates tran-

scription of downstream genes. These include fixNOQP, encoding the high-affinity cbb3-

type terminal oxidase used in symbiosis. In free-living Rlv3841, the hFixL-FxkR-FixK path-

way was active at 1% O2, and confocal microscopy showed hFixL-FxkR-FixK activity in the

earliest stages of Rlv3841 differentiation in nodules (zones I and II). Work on Rlv3841 inside

and outside nodules showed that the hFixL-FxkR-FixK pathway also induces transcription

of fnrN at 1% O2 and in the earliest stages of Rlv3841 differentiation in nodules. We con-

firmed past findings suggesting a role for FnrN in fixNOQP expression. However, unlike

hFixL-FxkR-FixK, Rlv3841 FnrN was only active in the near-anaerobic zones III and IV of

pea nodules. Quantification of fixNOQP expression in nodules showed this was driven pri-

marily by FnrN, with minimal direct hFixL-FxkR-FixK induction. Thus, FnrN is key for full

symbiotic expression of fixNOQP. Without FnrN, nitrogen fixation was reduced by 85% in

Rlv3841, while eliminating hFixL only reduced fixation by 25%. The hFixL-FxkR-FixK path-

way effectively primes the O2 response by increasing fnrN expression in early differentiation

(zones I-II). In zone III of mature nodules, near-anaerobic conditions activate FnrN, which

induces fixNOQP transcription to the level required for wild-type nitrogen fixation activity.

Modelling and transcriptional analysis indicates that the different O2 sensitivities of hFixL

and FnrN lead to a nuanced spatiotemporal pattern of gene regulation in different nodule

zones in response to changing O2 concentration. Multi-sensor O2 regulation is prevalent in

rhizobia, suggesting the fine-tuned control this enables is common and maximizes the effec-

tiveness of the symbioses.
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Author summary

Rhizobia are soil bacteria that form a symbiosis with legume plants. In exchange for shel-

ter from the plant, rhizobia provide nitrogen fertilizer, produced by nitrogen fixation. Fix-

ation is catalysed by the nitrogenase enzyme, which is inactivated by oxygen. To prevent

this, plants house rhizobia in root nodules, which create a low oxygen environment. How-

ever, rhizobia need oxygen, and must adapt to survive the low oxygen concentration in

the nodule. Key to this is regulating their genes based on oxygen concentration. We stud-

ied one Rhizobium species which uses three different protein sensors of oxygen, each turn-

ing on at a different oxygen concentration. As the bacteria get deeper inside the plant

nodule and the oxygen concentration drops, each sensor switches on in turn. Our results

also show that the first sensor to turn on, hFixL, primes the second sensor, FnrN. This pre-

pares the rhizobia for the core region of the nodule where oxygen concentration is lowest

and most nitrogen fixation takes place. If both sensors are removed, the bacteria cannot

fix nitrogen. Many rhizobia have several oxygen sensing proteins, so using multiple sen-

sors is likely a common strategy enabling rhizobia to adapt to low oxygen precisely and in

stages during symbiosis.

Introduction

Rhizobia are alpha-proteobacteria that engage in symbiosis with legume plants [1]. The bacte-

ria convert inert atmospheric N2 into biologically accessible ammonia and provide it to their

plant host in a process called nitrogen fixation [2,3]. All biological fixation is catalysed by the

nitrogenase enzyme complex that evolved before the Great Oxygenation Event and requires

near-anoxic conditions to function [4–6]. However, rhizobia are obligate aerobes and must

respire to meet the high energy demands of nitrogen fixation [7,8]. These competing require-

ments create an ‘oxygen paradox’ in symbiotic nitrogen fixation [9,10]. To overcome this para-

dox, intricate cooperation between rhizobia and their plant partners has evolved (reviewed in

[11,12]). Legume plants host rhizobia in dedicated root nodules which form where bacteria

have entered the plant root, usually via infection threads (reviewed in [13,14]). Nodules create

a near-anoxic internal environment suitable for nitrogenase activity [15–17]. To produce this

environment, oxygen (O2) is captured and shuttled to bacteroids by plant leghaemoglobins

[18–21]. The concentration of remaining free O2 in the core nitrogen fixation zone of nodules

is as low as 20–50 nM [22,23]. Rhizobia undergo a radical lifestyle change after nodule entry to

survive and fix nitrogen in these conditions (reviewed in [24,25]). In indeterminate nodules,

such as those produced by Pisum sativum (pea), rhizobia are initially free-living upon entry

[26,27]. They then undergo irreversible lifestyle changes as they move from the nodule tip to

its core [28,29]. Beginning in zone II and accelerating in the II-III interzone, rhizobia termi-

nally differentiate into quasi-organelle bacteroids specialized for nitrogen fixation [30,31].

Zone III of indeterminate nodules contains differentiated bacteroids which are actively fixing

nitrogen [32]. Rhizobial regulatory mechanisms sensitive to O2 tension are essential for suc-

cessful differentiation into bacteroids and the establishment of a productive symbiosis [33–

35].

Multiple O2 sensors have evolved in rhizobia, three of which are widespread and often co-

exist within the same organism [11,36]. The first is the membrane-bound FixL protein, which

forms a two-component system (TCS) with the FixJ receiver protein (reviewed in [37,38]).

Under microaerobic conditions, FixL phosphorylates FixJ, which in turn induces expression

of the fixK transcription factor [39–41]. FixK induces expression of downstream genes by
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binding as a dimer to an ‘anaerobox’ motif (TTGAT-N4-ATCAA) upstream of their promoters

[42,43].

The second common O2 sensor is a variant of FixL called hybrid FixL (hFixL) [44,45]. This

forms an alternative TCS with FxkR acting as the receiver protein. FxkR is not a FixJ homolog

but similarly induces expression of fixK, by binding to an upstream ‘K-box’ motif (GTTA-

CA-N4-GTTACA) [46]. The third O2 sensor is the FnrN transcription factor. Like FixK, FnrN

binds the anaerobox motif as a dimer and both are close homologs of the E. coli anaerobiosis

regulator FNR [47–49]. Unlike FixK but like FNR, FnrN contains an N-terminal cysteine-rich

cluster that makes the protein a direct sensor of O2 [50–53]. The FixL and hFixL sensors are

known to become active at relatively mildly microaerobic conditions, including in free-living

rhizobia [54–56]. FnrN is likely to be far less O2 tolerant. The O2 sensitivity of FnrN has not

been determined, but the E. coli FNR homolog is active only under anaerobic conditions [57–

59]. All symbiotic rhizobia studied to date employ at least one of these three sensors [11]. It is

common for these sensors to coexist, notably in Rhizobium leguminosarum biovar viciae
VF39, multiple strains of Ensifer meliloti (previously Sinorhizobium meliloti) and Rhizobium
etli CFN42 [44,45,60–62].

Further emphasizing the importance of O2 regulation in symbiotic nitrogen fixation, rhizo-

bia also employ the O2 sensing NifA transcription factor to regulate their final differentiation

into nitrogen fixing bacteroids (for reviews see [38,63]). NifA oxygen sensitivity is thought to

derive from a metal-binding cysteine-rich motif in an inter-domain linker of the protein [64–

66]. The protein has a large regulon, notably including nitrogenase components such as nifH
[67–70]. Expression of nifA is typically auto-regulated in rhizobia, often via read-through from

an upstream gene or operon that is NifA regulated, in many cases fixABCX [69,71–73]. In

Rlv3841, a fixABCX operon is found directly upstream of nifA, suggesting such a read-through

NifA auto-activation mechanism. Usually, neither expression of nifA nor the activity of the

protein is directly regulated by the three O2 sensors described above [11]. One notable excep-

tion is E.meliloti, where nifA is regulated by the FixLJ system [74–76]. There is no evidence

that FixK or FnrN directly regulates nifA expression in Rlv3841.

There appears to be a spectrum among rhizobia, with some species segregating oxygen sen-

sors into separate pathways, whilst in other species these sensors have partially or completely

merged into a combined hierarchical pathway [77,78]. Where oxygen sensors are in separated

pathways, redundancy often exists. In these situations the loss of one oxygen sensor does not

abolish nitrogen fixation activity [79,80]. By contrast, where sensors have been merged into a

single regulatory pathway, some components are individually essential [11]. Thus, loss of one

oxygen sensor can severely impair nitrogen fixation even if other sensors remain.

In R. leguminosarum bv. VF39, knocking out FnrN or hFixL reduced nitrogen fixation to

30% or 50% of WT respectively, suggesting a non-hierarchical, redundant arrangement [60].

The hFixL-FxkR-FixK pathway of R. etli CFN42 is dispensable as a double fixKmutant had no

effect on nitrogen fixation, whilst a double fnrNmutant reduced fixation to 20% of WT levels.

By contrast, R. etli CFN42 appears to employ a complex hierarchical pathway, with multiple

homologs of FixK and FnrN regulating each other’s expression [61,62]. Species encoding

homologs of only hFixL or FnrN have also been found. Rhizobium leguminosarum biovar

viciaeUPM791 contains two FnrN homologs but neither FixL nor hFixL [81]. It is unknown

whether the two FnrN proteins respond to different O2 concentrations or act in a redundant

fashion. E.meliloti 1021 contains no FnrN homolog but a well-studied FixLJ system and

appears to have homologs of hFixL and FxkR [82–84].

To examine the relationship between hFixL and FnrN, we studied the model organism Rhi-
zobium leguminosarum biovar viciae 3841 (Rlv3841) which employs both sensors (Fig 1)

[85,86]. Rlv3841 has a single chromosome whose gene names start with RL, and six
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megaplasmids pRL7-12 whose gene names start with e.g. pRL9. The main symbiotic plasmid is

pRL10, but many symbiotic genes are also found on pRL9 including a copy of the fixNOQP
and fixGHIS operon. Rlv3841 encodes two copies of hfixL, which we named hfixL9 (pRL90020

on pRL9) and hfixLc (RL1879 on the chromosome), with 54.9% identity at the protein level.

The strain also contains two homologs (58% identity) of fxkR, fxkR9 (pRL90026) and fxkRc

(RL1881). It has three putative fixK genes, which we designated fixK9a (pRL90019), fixK9b

(pRL90025) and fixKc (RL1880). The fixK9a and fixK9b sequences have 53% amino acid iden-

tity, whilst fixKc shares 38% and 47% identity with these proteins, respectively. Both fixK9a-

hfixL9 and fixKc-hfixLc appear to form operons (Fig 1B and 1D). Rlv3841 has one copy of fnrN
(RL2818), regulated by two anaeroboxes. A similar dual-anaerobox arrangement exists in Rlv

UPM791, where FnrN positively and negatively auto-regulates its own expression [87]. Bind-

ing of FnrN to the distal anaerobox induces fnrN transcription and binding to the proximal

anaerobox represses it. Auto-activation of FnrN has also been reported in Rhizobium etli
CNPAF512 [88]. FixK regulation of fnrN expression is likely as it also binds anaeroboxes, but

this had not been investigated.

Fig 1. The integrated hFixL-FxkR-FixK and FnrN oxygen regulation systems of Rlv3841 form a single pathway and are genetically clustered. Oxygen is shown in red

diamonds. Proteins are shown as ovals, operator sites as squares and genes as pointed rectangles. Transcription start sites are shown as right-angled arrows. Line endings

indicate activation (arrows), inhibition (blunt end) and translation (circle). (A) The single pathway formed by the two sensors acts in two stages. Stage I starts under

microaerobic conditions and can function outside the nodule. In this stage, hFixL is active but FnrN is not. hFixL activates FxkR, which binds to the K-box operator

(orange “K” squares) to induce expression of fixK. FixK binds to anaerobox operators (blue “A” squares) to induce expression, including upstream of fixNOQP (dashed

line) and fnrN. Once oxygen in the bacteria reaches near-anaerobic levels, FnrN becomes active and stage II begins. Like FixK, FnrN binds anaeroboxes. It auto-regulates

fnrN both positively and negatively and induces fixNOQP expression. (B) Rlv3841 has multiple copies of several oxygen regulation genes and many are arranged in

clusters. On megaplasmid pRL9, fixK9a forms an operon with hfixL9, regulated by a K-box. This operon is adjacent to fixNOQP9, regulated by an anaerobox. (C) fixK9b and

fxkR9 are adjacent, with an anaerobox and a K-box in their intergenic region. (D) The Rlv3841 chromosome also has a cluster, containing fxkRc, fixKc and hfixLc. Unlike

the similar clusters on pRL9, the intergenic region of this cluster contains no anaerobox or K-box operators. (E) The fnrN gene is not part of a cluster and is positively and

negatively regulated by a distal and proximal anaerobox, respectively. Details of transcription start site, anaerobox and K-box locations can be found in Table 1.

https://doi.org/10.1371/journal.pgen.1009099.g001
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A study in R. leguminosarum VF39 found that microaerobic expression of fnrN also

requires RpoN [89]. This finding has not been replicated elsewhere, and its significance

remains unclear. Work in R. etli CNPAF512 showed that fnrN is not controlled by RpoN in

that organism [88]. Rlv3841 encodes one putative rpoN gene (RL0422), but we found no RpoN

binding sites upstream of the Rlv3841 fnrN transcription start site. RpoN therefore does not

appear to be required for fnrN expression in Rlv3841.

A parallel arrangement of hFixL-FxkR-FixK and FnrN in Rlv3841 would produce redun-

dancy, whereas an arrangement in series would create hierarchy between the two regulators.

Our goal is therefore to understand how the two sensors interact in Rlv3841 and to provide

insight into why they coexist.

Results

Expression of fnrN is auto-regulated and controlled by the

hFixL-FxkR-FixK pathway

The hFixL-FxkR-FixK pathway is known to be active at relatively high O2 concentrations,

including in free-living rhizobia under microaerobic conditions [45,90]. The role of FnrN is

less well understood and we began by investigating this sensor. The fnrN gene contains two

anaeroboxes upstream of its promoter, a proximal site at -2 relative to the transcription start

site (TSS) and a distal site at -34 (Fig 1E and Table 1). Binding at the proximal site inhibits

transcription through steric hindrance, whilst the distal site activates it [87]. As expected from

the presence of the distal site, fnrN was induced under microaerobic conditions in free-living

Rlv3841 (Fig 2). Both FixK and FnrN bind to anaerobox operators and induce gene expression

under microaerobic conditions [91,92]. Therefore, microaerobic induction of fnrN could be

due to FnrN auto-activation and/or induction by the hFixL-FxkR-FixK pathway. To determine

their respective importance, expression of fnrN was studied in Rlv3841 mutants defective in

either hFixL or FnrN.

In a double hfixLmutant (LMB496; hfixL9::ΩSpec hfixLc:pK19 single recombination), free-

living microaerobic expression of fnrN was reduced to 25% of its wild-type (WT) level (Fig 3).

Table 1. Location of transcription start sites, anaeroboxes and K-boxes for select oxygen regulation genes in Rlv3841.

Gene name TSS coordinate Anaerobox 1 location Anaerobox 2 location K-box location

fnrN (RL2818) 2978390 -34 -2 Not present

fixK9a (pRL90019) 19878 Not present Not present -62

fixK9b (pRL90025) 27090 Not present Not present -62

fixKc (RL1880) 1977111 Not present Not present Not present

fxkR9 (pRL90026) 27146 Not present +38 +6

fxkRc (RL1881) 1977167 Not present Not present Not present

fixNOQP9 (pRL90018-16) 19721 -33 Not present Not present

fixNOQP10 (pRL100205-207) 206214 -34 Not present Not present

fixGHIS9 (pRL90015-12A) 15908 -32 Not present Not present

fixGHIS10 (pRL100208) 210004 -32 Not present Not present

Locations of anaeroboxes and K-boxes are given relative to the TSS of each gene respectively. Anaeroboxes more than 90 bp upstream of transcription start sites are not

included. The location of activating anaeroboxes is well conserved across the genes shown above (between -32 and -34 relative to the TSS). Likewise, both megaplasmid-

encoded fixK copies have their respective K-boxes in the same position relative to the TSS (-62). The anaerobox downstream (+38) of the fxkR9 transcription start site

likely represses it when bound. A single K-box is shared between fxkR9 and fixK9b (see Fig 1). It is correctly located (-62) to induce fixK9b when bound, and its location

suggests it simultaneously represses fxkR9 (+6). The operators downstream of the fxkR9 TSS may create a negative feedback loop in the Rlv3841 hFixL-FxkR-FixK

pathway. The downstream anaerobox also suggests FnrN repression of hFixL-FxkR-FixK via repression of fxkR9 transcription, but this requires further study.

https://doi.org/10.1371/journal.pgen.1009099.t001
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The single mutant of hfixL9 (LMB495; hfixL9::ΩSpec) individually reproduced most of this

reduction whilst the single mutant of hfixLc (LMB403; hfixLc:pK19 single recombination) did

not reduce fnrN expression. This suggests hFixL9 is the critical hFixL protein under free-living

microaerobic conditions, with hFixLc playing little to no role.

hFixL acts through the FxkR intermediary in rhizobia and Rlv3841 contains two FxkR

homologs [44]. fxkR9 forms an O2 regulation cluster with fixK9b which we labelled cluster 2

(Fig 1C) and fxkRc forms a cluster with fixKc-hfixLc, which we labelled cluster 3 (Fig 1D). Clus-

ter 2 contains an anaerobox and a K-box. The anaerobox is relatively far from the fixK9b TSS

Fig 2. Microaerobiosis induces fixNOQP and fnrN genes in free-living Rlv3841. Promoter fusions of fixNOQP9 (OPS1267), fixNOQP10 (OPS1287) and fnrN
(OPS1296) were used to measure the activity of these promoters in free-living Rlv3841 at 1% O2 (red bars) relative to 21% O2 (blue bars). Activity of all three

promoters, measured as fluorescence normalised by OD600, increased under microaerobic conditions. A positive control (OPS1294) showed no impact on OD-

normalised fluorescence due to the microaerobic environment. A similar fold induction of ~5 was recorded for both fixNOQP operons, but fnrN showed more than

double this fold change indicating stronger induction. No effect of O2 concentration on nifH expression (OPS1268) was observed, indicating no NifA activity. Values

are plotted on a logarithmic scale. Data are averages (±SEM) from three biological replicates, ns (not significant) P� 0.05; ���P< 0.001; ����P< 0.0001; by

Student’s t test.

https://doi.org/10.1371/journal.pgen.1009099.g002
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(-94), but downstream of the fxkR9 TSS, suggesting its main role is to repress fxkR9 transcrip-

tion (Table 1). Its effect on fixK9b transcription may be minimal, if any. The K-box is also

downstream of the fxkR9 TSS, suggesting it also represses transcription. Simultaneously, this

K-box also likely acts to induce fixK9b, as its location upstream of the fixK9b TSS (-62) is identi-

cal to the relative position of the upstream fixK9a K-box in cluster 1 (Fig 1B and Table 1). Both

K-boxes therefore appear functional for fixK induction, and the cluster 2 K-box appears to

have a dual function, repressing fxkR9 and inducing fixK9b. The second cluster, containing

fxkRc, has no anaeroboxes or K-boxes (Fig 1D). This could imply minimal expression from the

genes in this cluster, or constitutive expression that is not O2 regulated. Neither fixKc (1.6-fold

upregulated, p = 0.140) nor fxkRc (1.3-fold upregulated, p = 0.145) was significantly upregu-

lated in 21 day old bacteroids compared to free-living Rlv3841 [93]. Based on these findings,
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https://doi.org/10.1371/journal.pgen.1009099.g003
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we speculated that FxkR9 is the main FxkR protein and fxkR9 was deleted to produce strain

OPS1808 (ΔfxkR9). This mutant reproduced the reduced induction of fnrN under free-living

microaerobic conditions observed in the double hfixLmutant (Fig 3). This finding supports

the role of FxkR9 as the mediator of hFixL O2 regulation in Rlv3841, in agreement with studies

in other rhizobia [44,45]. Studying the role of the hFixL-FxkR-FixK pathway in fnrN expres-

sion in planta, we observed that the double hfixLmutant reduced fnrN expression to 28% of

WT levels (Fig 4A). This indicates the pathway also plays an important role in inducing fnrN
during symbiosis.

We next studied the role of FnrN auto-regulation. A mutant of fnrN (LMB648, fnrN::ΩTet)

had no effect on expression of fnrN at 1% O2 (Fig 3), indicating FnrN auto-activation does not

occur under free-living microaerobic conditions. By contrast, in planta the fnrNmutant

reduced fnrN expression to 22% of WT levels (Fig 4A), similar to the reduction observed in the

hfixL double mutant. FnrN auto-activation is thus an important regulatory effect during sym-

biosis but not under microaerobic conditions. During symbiosis, expression of fnrN is driven

both by auto-activation and the hFixL-FxkR-FixK pathway, and both are required to attain full

WT-level expression of the gene.

FnrN is critical for symbiotic gene expression but hFixL also plays an

important role

To understand the respective importance of FnrN and hFixL as regulators of

anaerobox controlled genes during symbiosis, their role in fixNOQP expression was studied.

The fixNOQP operon encodes a high-affinity cbb3-type terminal oxidase required for respira-

tion during symbiosis [94–96]. It is typically regulated by an anaerobox [97]. Some rhizobia

Fig 4. In planta, fnrN is both auto-regulated and controlled by the hFixL-FxkR-FixK pathway, whilst the fixNOQP operons are primarily controlled by

FnrN. Rlv3841 WT and mutant strains (fnrN, LMB648; hfixL9 hfixLc, LMB496) containing promoter fusions to syfp2 for fnrN (pOPS0980), fixNOQP9 (pOPS0978)

and fixNOQP10 (pOPS0977) were inoculated on plants and bacteroids isolated for measurements. Expression in bacteroids of fnrN (A) is impaired in the fnrN
background where auto-activation cannot take place. Expression of fnrN is similarly impaired in the double hfixLmutant, indicating the hFixL-FxkR-FixK

pathway also plays an important role in symbiotic fnrN induction. Expression of fixNOQP9 (B) and fixNOQP10 (C) is significantly reduced in the double hfixL
mutant and almost abolished in the fnrNmutant. Thus both FnrN and the hFixL-FxkR-FixK pathway play an important role in the expression of all three genes.

Data are averages (±SEM) from at least three plants, ����P< 0.0001; by one-way ANOVA with Dunnett’s post-hoc test for multiple comparisons.

https://doi.org/10.1371/journal.pgen.1009099.g004
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encode multiple redundant terminal oxidases controlled by different regulators, but no alter-

natives appear to be encoded by Rlv3841 [98,99]. The strain therefore likely relies entirely on

fixNOQP for respiration during symbiosis. Three putative homologs of fixNOQP exist in

Rlv3841, which we labelled fixNOQP9 (encoded on pRL9), fixNOQP10 (encoded on pRL10)

and fixNOQPc (encoded on the chromosome) [85]. Rlv VF39 encodes two fixNOQP operons,

and either was able to sustain nitrogen fixation activity [56]. In Rlv3841, the plasmid-encoded

operons are near-identical (>90% protein identity) but diverge from the fixNOQPc operon,

with which they share approximately 50% identity. Only the plasmid-encoded fixNOQP9 and

fixNOQP10 operons contain an upstream anaerobox, at -33 and -34 relative to their TSS

respectively (Table 1). Past microarray work in our group found no significant upregulation of

fixNc expression (1.7-fold upregulated, p-value 0.101) in 21 day old bacteroids compared to

free-living Rlv3841 [93]. This contrasts sharply with fixN9 (38.1-fold up, p = 0.010) and fixN10

(119.6-fold up, p = 0.003), both highly upregulated. Taken together, these findings suggest the

two plasmid-encoded fixNOQP operons of Rlv3841 are functional and anaerobox-regulated,

whilst fixNOQPc is not. Rlv3841 also has two homologs of the fixGHIS operon (>90% protein

identity), encoding the assembly machine for the fixNOQP terminal oxidase [51,100]. Like fix-
NOQP, fixGHIS operons are typically anaerobox regulated [47,62,101]. Both fixGHIS operons

in Rlv3841 have a single upstream anaerobox, in a near-identical position to those of the fix-
NOQP operons [85] (Table 1). In line with findings in other rhizobia, the fixGHIS and fix-
NOQP operons are therefore likely regulated by oxygen in a similar way [89,102,103].

Both fixNOQP operons were induced in cultured cells under microaerobic conditions, con-

firming their regulation by O2 (Fig 2). In culture, the double hfixLmutant severely reduced

this microaerobic induction, resulting in minimal expression of fixNOQP10 and 17% of WT

fixNOQP9 expression (Fig 3). The single hfixL9 mutant significantly reduced expression of

both operons whilst the hfixLc mutant only reduced expression of fixNOQP9, to 71% of WT.

These results indicate hFixL9 is the dominant protein and hFixLc plays only a minor role in fix-
NOQP expression, matching their respective importance for microaerobic fnrN expression

(Fig 3). In the Rlv3841 fxkR9 mutant, expression of both fixNOQP operons was reduced to less

than 25% of WT, indicating that the protein is required for hFixL regulation of fixK and hence

fixNOQP, as found in other rhizobia [44]. The hFixL-FxkR-FixK pathway is thus a key regula-

tor of fixNOQP expression under free-living microaerobic conditions. The remaining expres-

sion of fixNOQP9 and fixNOQP10 in the fxkR9 mutant may be due to redundancy via the fxkRc

homolog, or the result of background FixK or FnrN activity. By contrast, in these conditions

the fnrNmutant minimally affected fixNOQP expression, with only fixNOQP9 showing a small

albeit statistically significant reduction (73% of WT). In line with our study of fnrN expression,

the hFixL-FxkR-FixK pathway is crucial for fixNOQP expression under free-living microaero-

bic conditions whilst FnrN plays a minimal role. It is likely that the FnrN protein remains

mostly inactive at the O2 concentration (1% O2) used in our free-living experiments.

We also checked the activity of NifA, a central activator of nitrogen fixation genes, in free-

living microaerobic conditions [64,65,104]. NifA is O2 sensitive and in most rhizobia is active

only in the near-anoxic core of nodules [32,55,105,106]. Work in E.meliloti has however sug-

gested the protein may already be active in the early stages of nodule development [107].

Recent work has suggested some rhizobial nifA variants can be active outside of the nodule

[108,109]. We checked the NifA dependant induction of nifH, a component of the nitrogenase

complex [70,73,110]. As expected, nifH expression did not increase under microaerobic condi-

tions (Fig 2), indicating Rlv3841 NifA is not expressed or is inactive under these conditions.

Next, the role of FnrN and hFixL on expression of fixNOQP in planta during symbiosis was

studied. We found that nodules formed by the fnrNmutant expressed both fixNOQP operons

at only 5% of WT (Fig 4B and 4C). The FnrN sensor is thus critical for fixNOQP expression
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inside the nodule. In nodules infected by the double hfixLmutant, expression of fixNOQP9

and fixNOQP10 was reduced to 68% and 58% of WT, respectively. Expression of fixK9a was

abolished (S1 Fig), suggesting minimal FixK production in the absence of hFixL-FxkR TCS

activity. Taken together, our results indicate that FnrN is critical for fixNOQP expression dur-

ing symbiosis but the hFixL-FxkR-FixK pathway also plays a significant role.

To assess the impact of FnrN and the hFixL-FxkR-FixK pathway on symbiotic nitrogen fix-

ation, acetylene reduction assays were performed on pea plants inoculated with O2 regulation

mutants. In line with its poor expression of fixNOQP, the fnrNmutant was critically impaired

in nitrogen fixation, reducing acetylene at only 15% of the WT level (Fig 5A). Plants inoculated

with this mutant produced only small and unelongated pale or brown nodules indicative of

poor development and low leghaemoglobin production (Fig 5D). Thus, FnrN is critical for

effective nitrogen fixation by Rlv3841. Complementation restored 88% of WT acetylene reduc-

tion activity and produced nodules indistinguishable from WT (S2 Fig).

Plants inoculated with either individual hfixLmutants or the double mutant were also

impaired in nitrogen fixation but retained approximately 75% of WT acetylene reduction

activity (Fig 5A). No morphological changes were observed in these nodules (Fig 5C). Thus,

the hFixL-FxkR-FixK pathway is also an important contributor to symbiotic fixation activity

and is required to attain a WT level of fixation. Complementation of the double hfixLmutant

was attempted but the gene was found to be toxic in E. coli (see Materials and Methods for

details). The fxkR9 mutant impaired acetylene reduction rates but the decrease was insufficient

to be significant (p = 0.0584). The FxkRc homolog is likely at least partially active and suffi-

ciently produced to rescue hFixL regulation in the absence of FxkR9. In the triple fnrN hfixL9

hfixLc mutant (LMB673; fnrN::ΩTet hfixL9::ΩSpec hfixLc:pK19) only negligible levels of fixa-

tion were recorded. This reinforces the importance of the contribution from both the

hFixL-FxkR-FixK pathway and FnrN, suggesting no additional regulators exist which induce

these anaerobox controlled genes in Rlv3841 during symbiosis.

hFixL and FnrN are active in spatially distinct nodule zones during

symbiosis

Legume nodules create a large internal O2 gradient, with semi-aerobic conditions at their tip

and near-anoxic conditions as low as 20 nM O2 in the central nitrogen fixing zone [26,111].

This gradient is typically split into four zones (Fig 6A) containing different O2 concentrations

and rhizobia in different stages of differentiation (for reviews, see [26,31,112]). To understand

how hFixL-FxkR-FixK and FnrN operate in this context, we used confocal microscopy to map

the spatial expression of fnrN and fixNOQP in nodules.

Expression of fnrN in nodules infected with WT Rlv3841 (Fig 6B) was visible throughout all

nodule zones. This included expression in infection threads in zone I, indicating that low O2

induction of fnrN begins when Rlv3841 first enters the nodule and before the bacteria have dif-

ferentiated into bacteroids. By contrast, fnrN expression in zone I was greatly reduced in nod-

ules infected with the double hfixLmutant (Fig 6B). This suggests the O2 concentration in the

relatively aerobic environment of zone I is sufficiently low to activate the hFixL-FxkR-FixK

pathway. In the absence of this pathway, some fnrN expression was retained in zone II and

interzone II-III, but this was weaker than WT. Minimal fnrN expression was observed in zone

III in the hfixL double mutant.

In the fnrNmutant, expression of fnrN appeared to be localized primarily in infection

threads, around the entire periphery of the nodule (Fig 6B). Nodules infected by this mutant

were severely impaired in their development, failed to elongate and contained little to no

leghaemoglobin (Fig 5D). Free O2 concentration is unlikely to drop as much in these nodules
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as it does in fully developed nodules. It is therefore noteworthy that the hFixL-FxkR-FixK

pathway is nevertheless active, suggesting even poorly developed nodules produce a suffi-

ciently low O2 concentration to activate the pathway.

Expression patterns of fixNOQP9 (Fig 7A) and fixNOQP10 (Fig 7B) were similar. In WT

Rlv3841, expression of both started abruptly in the II-III interzone of nodules, in agreement

with past studies [55,56,113,114]. This abrupt start was absent in nodules infected with the

double hfixLmutant, indicating it requires the hFixL-FxkR-FixK pathway (Fig 7C and 7D).

Without hFixL-FxkR-FixK, expression of fixNOQP9 and fixNOQP10 started gradually after the

II-III interzone, presumably driven by FnrN. Expression was also weaker than in the WT. In

B
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Fig 5. Effect of oxygen regulation mutants on nodule morphology and acetylene reduction rates. (A) Acetylene reduction rates of Rlv3841 mutant strains,

normalised by WT activity (5.8 μmoles ethylene plant-1 hr-1, 16.8×10−3 μmoles ethylene mg-1 of nodules hr-1). Knocking out the hfixL genes individually (hfixL9,

LMB495; hfixLc, LMB403) and in combination (hfixL9 hfixLc, LMB496) only slightly reduced fixation. The fnrNmutant (LMB648) critically reduced fixation. The

single fxkR9 mutant (OPS1808) did not significantly reduce fixation (p = 0.0584), possibly because of redundancy through the fxkRc homolog. The mutant lacking

both FnrN and hFixL-FxkR-FixK function (LMB673) fixed at only a negligible rate. Rates are normalised per plant to total mass of nodules. Data are averages

(±SEM) from at least five plants, ns (not significant) P� 0.05; �P< 0.05; ��P< 0.01, ����P< 0.0001 by one-way ANOVA with Dunnett’s post-hoc test for multiple

comparisons. Photos of nodules colonized by WT (B), the double hfixL knockout (C) and the fnrN knockout (D). Scale bar, 1 cm.

https://doi.org/10.1371/journal.pgen.1009099.g005
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the fnrNmutant, we observed minimal expression of fixNOQP9. This may be due in part to the

poor development of these nodules, but the expression of fnrN in the fnrNmutant (Fig 6B)

indicates that the hFixL-FxkR-FixK pathway is still relatively active in these underdeveloped

nodules. The lack of fixNOQP expression in the fnrNmutant therefore indicates that

hFixL-FxkR-FixK cannot directly induce much fixNOQP expression in zone III of mature

nodules. Although FnrN is the main driver of fixNOQP expression, the hFixL-FxkR-FixK path-

way is required for full fnrN expression and also plays an important role, albeit indirectly.

Integration of FnrN and hFixL improves the O2 response

To study the dynamics of an integrated cascade containing both hFixL and FnrN, we con-

structed an ordinary differential equation model of their combined pathway based on past

Fig 6. Spatial expression pattern of fnrN in nodules infected with Rlv3841 WT and mutants. (A) Schematic representation of an indeterminate nodule

formed by P. sativum. Zone I contains undifferentiated rhizobia in infection threads. Rhizobia enter plant cells in zone II and in the II-III interzone undergo

substantial differentiation towards becoming bacteroids. Zone III is the main nitrogen fixing zone. Zone IV contains bacteroids which are beginning to senesce.

(B) Nodule cross sections showing expression of fnrN when inoculated with strains of Rlv3841 (Tn7 integrated syfp2 promoter fusion: WT, OPS2429; hfixL9

hfixLc double mutant, OPS2435; fnrNmutant, OPS2432). Expression begins immediately in zone I in nodules inoculated with WT; see C for a close-up of the

region highlighted in white. A similar level of expression is present across all zones. When inoculated with the double hfixLmutant, expression began in zone II

and was highest in this zone. In nodules inoculated with the fnrNmutant, expression was observed in infection threads around the periphery of the nodule; see

D for a close up of the region highlighted in white. This mutant does not form mature nodules, and the normal zones are therefore unlikely to be fully

developed. (C) Magnified view of fnrN expression in WT bacteria in zone I of the nodule. (D) Magnified view of fnrN expression in the infection threads of a

nodule inoculated with the fnrNmutant. Scale bar; 1 mm (B), 0.25 mm (C and D). All images were captured and processed using identical parameters; see

Materials and Methods for details.

https://doi.org/10.1371/journal.pgen.1009099.g006
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literature (S1 Text). A map of the regulatory connections incorporated in the model is given in

S3 Fig. One each of hFixL, FxkR, FixK, FnrN and FixNOQP is considered in the model. hFixL

was assumed to become active near a headspace concentration of 1% O2 and FnrN near 0.01%

Fig 7. Spatial expression pattern of the fixNOQP operons in nodules infected with Rlv3841 WT and mutants. (A)

Expression of fixNOQP9 in strains of Rlv3841 (Tn7 integrated syfp2 promoter fusion: WT, OPS2428; hfixL9 hfixLc

double mutant, OPS2434; fnrNmutant, OPS2431). In nodules inoculated with WT, expression starts abruptly at the

II-III interzone. In the double hfixLmutant, expression is reduced and begins gradually and at a point more proximal

to the root. Almost no expression is found in fnrNmutant nodules. (B) Expression of fixNOQP10 in WT Rlv3841 and

the double hfixLmutant followed a similar pattern as fixNOQP9 (pJP2 reporter plasmid syfp2 promoter fusion: WT,

OPS2468; hfixL9 hfixLc, OPS2469). Expression begins at the II-III interzone. In the double hfixLmutant, expression

again begins at a point more proximal to the root, in zone III of the nodule, and is reduced. (C) and (D) are areas of the

hfixL double mutant reporter images (for fixNOQP9 and fixNOQP10 respectively) with their brightness and contrast

altered to better display the distribution of fluorescence. Images within a set were captured and processed using

identical parameters. Fluorescence intensity between the A and B image sets, and across C and D, should not be

compared as intensity was normalised.

https://doi.org/10.1371/journal.pgen.1009099.g007
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O2, corresponding to dissolved O2 concentrations of ~12 μM and ~120 nM respectively at

equilibrium. Past studies have suggested that hFixL binds O2 cooperatively, and that FnrN and

FixK bind DNA as dimers [87,115–118]. Consequently all three of these binding processes

were modelled using Hill functions with a Hill coefficient of 2 [119,120]. FixK and FnrN were

assumed to have an identical induction effect on transcription when bound to the

anaerobox motif. However, based on the critical role that FnrN but not FixK plays in regula-

tion, FnrN was assumed to have a greater binding affinity for anaerobox motifs than FixK.

Our model reproduced the biphasic response of the integrated hFixL-FnrN cascade

observed in WT Rlv3841 as O2 dropped from atmospheric (~21%) to near-anoxic concentra-

tions (0.001%) (Fig 8A and 8B). Expression of fnrN and fixNOQP first began in microaerobic

Fig 8. Modelling predicts the biphasic response of fnrN and fixNOQP expression controlled by a cascade integrating the hFixL and FnrN oxygen sensors. (A, C, E)

Expression of fnrN. (B, D, F) Expression of fixNOQP. Black lines indicate stable expression steady-states, dashed lines indicate unstable steady states. In cells whose state is

in a red shaded area, expression is expected to decrease; in a blue shaded area, it is expected to increase (white arrows indicate expected direction of change). (A) In a WT

system with both sensors, expression of fnrN initially begins under microaerobic conditions. Expression increases slightly due to FnrN auto-activation as O2 concentration

drops, but is stabilized by auto-repression. (B) Expression of fixNOQP begins under microaerobic conditions, then increases when FnrN becomes active as O2 drops

further. (C, D) In the absence of FnrN, expression of fnrN and fixNOQP begins under microaerobic conditions driven by the hFixL-FxkR-FixK pathway, but does not

subsequently increase. (E, F) In cells where only the FnrN system is present, expression of the fnrN gene and fixNOQP operon does not occur until O2 concentration drops

sufficiently for FnrN to be active. Once FnrN is active, the system exhibits bistability, with stable states of both near-zero and high levels of fnrN and fixNOQP expression.

As the O2 concentration continues to drop, an increasing proportion of cells are expected to transition to the high expression state due to stochastic variations in

expression.

https://doi.org/10.1371/journal.pgen.1009099.g008
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conditions (10–1% O2) under the action of the hFixL-FxkR-FixK pathway. Subsequent activa-

tion of FnrN around 0.01% O2 led to a further increase in fixNOQP expression, mirroring our

findings in planta. Expression of fnrN near 0.01% O2 initially increased due to auto-activation.

Subsequently, as the O2 concentration continued to drop, fnrN expression decreased due to

auto-repression. Thus, the model correctly predicts a generally homogenous level of fnrN
expression throughout the nodule, and increased fixNOQP expression in the core of the nod-

ule relative to the tip.

In the absence of FnrN (Fig 8C and 8D), the model shows initial expression of fnrN and fix-
NOQP under microaerobic conditions due to the hFixL-FxkR-FixK pathway. There is however

no further induction as O2 continues to drop. This agrees with our finding that some fnrN
expression takes place in the Rlv3841 fnrNmutant, albeit at a reduced level relative to WT. The

model also predicts a lower level of fixNOQP expression in the fnrNmutant, consistent with

our confocal microscopy results for fixNOQP9 expression (Fig 7A).

In the absence of hfixL (Fig 8E and 8F), an important new behaviour of the pathway is pre-

dicted by our model. As expected, no induction of fnrN or fixNOQP takes place under micro-

aerobic conditions, in line with our experimental findings. However, once O2 drops below

0.01%, our model suggests that the pathway may be bistable, with possible steady states at

either high fnrN expression or near-zero expression. As the O2 concentration continues to

decrease, the disturbance needed to move from minimal expression to the high expression

steady state becomes smaller. Thus, as the bacteria experience increasingly anaerobic condi-

tions moving to areas of the nodule more proximal to the root, the model predicts that an

increasing proportion of cells will transition from near-zero to high fnrN expression due to

stochastic variations in expression of the gene. This agrees with the gradual increase in fix-
NOQP expression observed in the hfixL double mutant in Rlv3841 (Fig 7A and 7B).

Discussion

O2 regulation is essential for rhizobia to establish a successful symbiosis with their legume

partners. The model Rhizobium Rlv3841 employs three O2 sensors in symbiosis: hFixL, FnrN

and NifA. In the present study, we examined this multi-sensor arrangement through a combi-

nation of in vitro, in planta and in silico approaches. The hFixL-FxkR-FixK pathway is active

in the earliest stages of symbiosis, followed by FnrN as the bacteria move to areas of the nodule

more proximal to the root. Both regulate genes required for symbiotic survival, such as fix-
NOQP. NifA is active at a later stage, in zone III of nodules, and regulates activation of core

nitrogen fixation machinery. The hFixL-FxkR-FixK pathway is the most O2 tolerant of the

three sensors, active in free-living bacteria under microaerobic conditions and in planta begin-

ning in zone I of nodules. The FnrN protein is inactive under free-living microaerobic condi-

tions and only becomes active from the II-III interzone onwards. FnrN is critical for

expression of fixNOQP and nitrogen fixation activity. Indirectly, the hFixL-FxkR-FixK path-

way also plays an important role by inducing fnrN expression under microaerobic conditions,

priming it for auto-activation in the central nitrogen fixing zone. Our modelling results sug-

gest the hFixL-FxkR-FixK pathway also prevents bistability in the low O2 response, thereby

ensuring all cells commit to fixNOQP expression in the central nitrogen fixing zone. Thus

hFixL-FxkR-FixK and FnrN act as a single regulation pathway which integrates both O2

sensors.

Rhizobia experience a drop in O2 concentration of at least three orders of magnitude as

they transition from a free-living lifestyle in soil to terminally differentiated bacteroids in nod-

ules. Like Rlv3841, it is common for other rhizobia to employ multiple O2 sensors during this

transition. These multiple sensors may be used to create redundancy, a feature often found in
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key regulatory pathways to improve their robustness. Elements of this redundancy are present

in Rlv3841, including the multiple hFixL homologs and the overlap between their role and that

of FnrN. However, our results also demonstrate that each sensor plays an important distinct

role. Thus, integrating sensors into a single cascade in Rlv3841 also improves the responsive-

ness of regulation and allows the bacteria to respond appropriately across the entire range of

O2 concentrations experienced during symbiosis. A similar dual-sensor arrangement has also

previously been described in Rhodopseudomonas palustris, which combines a FixLJ-FixK path-

way with the FnrN homolog AadR [121–123]. R. palustris is not symbiotic but is noted for its

ability to grow under both aerobic and anaerobic conditions [124]. The combined pathway in

R. palustris was shown to provide fine-tuned regulation for adapting to the large range of O2

concentrations it experiences.

The prevalence of multi-sensor O2 regulation arrangements in rhizobia may also have

arisen in response to competitive fitness pressures. Legume plants can sanction rhizobia based

on their nitrogen fixation activity [125–127]. We speculate the bacteria may also be selected

based on the speed with which they are able to adapt to life inside nodules and begin produc-

tively fixing nitrogen. This would create pressure for strains to rapidly demonstrate their effec-

tiveness to their legume host. Past work has suggested that one of the benefits of FnrN

compared to FixLJ-FixK is that it is more responsive to O2 concentration, providing more flex-

ible regulation [86,87,128]. By enabling more fine-tuned control, integrated multi-sensor O2

regulatory pathways may speed up the symbiotic transition, providing a competitive

advantage.

Materials and methods

Bacterial strains and growth conditions

E. coli strains were grown in liquid or solid LB medium[129] at 37˚C supplemented with

appropriate antibiotics (μg mL-1): ampicillin 100, kanamycin 20, spectinomycin 50 and genta-

micin 10. Rlv3841 strains were grown at 28˚C in Tryptone-Yeast (TY) extract[130] or Univer-

sal Minimal Salts (UMS)[131] with glucose and ammonium chloride at 10 mM each.

Antibiotics for Rlv3841 were used at the following concentrations (μg mL-1): gentamicin 20,

kanamycin 50, spectinomycin 100, streptomycin 500, tetracycline 2, neomycin 80 and nitro-

furantoin 20. A list of the strains used is given in S2 Text.

Cloning, colony PCRs and conjugations

All routine DNA analyses were done using standard protocols [129]. PCR reactions for cloning

were carried out according to the manufacturer’s instructions with Q5 High-Fidelity DNA

Polymerase (New England Biolabs). Colony PCRs used OneTaq DNA Polymerase (NEB).

Restriction enzymes (NEB) were used according to the manufacturer’s instructions. Sanger

sequencing was carried out by Eurofins Genomics. Assemblies using BD In-Fusion cloning

(Takara Bio) were performed according to the manufacturer’s instructions. Triparental conju-

gations, and transductions with bacteriophage RL38, were performed as previously described

[132,133]. Tn7 integrations were performed according to the method described by Choi and

colleagues [134,135]. A list of the plasmids and primers used is given in S2 Text.

Mutant generation and complementation

Rlv3841 hfixLc (RL1879) mutant, LMB403. A 1 Kb internal fragment of hfixLc was PCR

amplified from Rlv3841 with primers pr0988/0989, adding XbaI sites at the 5’ and 3’ ends.

This fragment was cloned into pK19mob digested with XbaI, using BD In-Fusion cloning, to
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produce plasmid pLMB441. Triparental filter conjugation of pLMB441 into WT Rlv3841 was

then performed using kanamycin selection. Colonies were screened by colony PCR using

primers pr0482 and pK19A, which bind upstream of hfixLc and inside the integrated pK19

backbone respectively. This gave mutant strain LMB403.

Rlv3841 hfixL9 (pRL90020) mutant, LMB495. A 1 Kb region containing hfixL9 was PCR

amplified from Rlv3841 with primers pr1270/1271. This region was subcloned into pJET1.2/

blunt to produce plasmid pLMB581. Plasmid pLMB581 was then digested with XbaI/XhoI and

the hfixL9 region cloned into pJQ200SK using BD In-Fusion, digested with the same enzymes,

to give plasmid pLMB585. A spectinomycin resistance cassette was digested out of the

pHP45OSpc plasmid with SmaI and cloned into pLMB585 at a unique StuI site blunted using

the Klenow fragment to give plasmid pLMB590. Triparental filter conjugation of pLMB590

into WT Rlv3841 was then performed using spectinomycin selection. Colonies were screened

by colony PCR using primers pr1272/1273. This gave mutant strain LMB495.

Rlv3841 double hfixLc hfixL9 mutant, LMB496. An Rlv3841 mutant in both hfixL genes

was generated by triparental filter conjugation of pLMB441 into strain LMB495, producing

double mutant strain LMB496.

Rlv3841 fnrN (RL2818) mutant, LMB648. A 2.5 Kb region containing fnrN was PCR

amplified from Rlv3841 with primers pr1381/1382. This fragment was digested with XbaI/

XhoI and cloned using BD In-Fusion into pJQ200SK linearized with digestion by the same

enzymes to make plasmid pLMB732. A tetracycline resistance cassette was then digested out of

the pHP45OTet plasmid with EcoRI and cloned into pLMB732 at a unique MfeI site to give

plasmid pLMB733. Triparental filter conjugation of pLMB733 into WT Rlv3841 was then per-

formed using tetracycline selection. Colonies were screened by colony PCR using primers

pr1432/1433. This gave mutant strain LMB648.

Rlv3841 triple hfixLc hfixL9 fnrN mutant, LMB673. A triple Rlv3841 mutant, in both

hfixL genes and the fnrN gene, was generated by transducing fnrN::OTet from LMB648 into

LMB496 to produce strain LMB673.

Rlv3841 fxkR9 (pRL90026) mutant, OPS1808. Two 1 Kb regions, one upstream and one

downstream of fxkR9, were PCR amplified from Rlv3841 with primer pairs oxp2874/2875 and

oxp2876/2877 respectively. These were cloned with BD In-Fusion into pK19mobSacB digested

with PstI and EcoRI to produce plasmid pOPS1199. Triparental filter conjugation of

pOPS1199 into WT Rlv3841 was then performed using kanamycin selection. Colonies were

screened by colony PCR using primers oxp3155 and pK19A. Colonies with correct integration

were subsequently subjected to sucrose selection to remove plasmid pK19mobSacB as previ-

ously described [136]. Colonies were then screened for loss of kanamycin resistance and using

colony PCR with primers oxp3155/3156 to isolate mutant strain OPS1808.

Complemented Rlv3841 fnrN mutant (OPS2260). The fnrN gene with its native pro-

moter was amplified from Rlv3841 with primers oxp4115/4116 and cloned into BsaI-digested

pOGG280 using BD In-Fusion. This plasmid was then genomically integrated with kanamycin

selection and colonies screened with primers oxp2327/2328 and confirmed with sequencing.

This produced strain OPS2260.

Attempts at complementing the Rlv3841 hfixL9 mutant. Our hfixL9 (LMB495) mutant

showed the largest phenotypic effect out of the two single hfixLmutants, and we therefore

attempted to complement this strain. We first attempted complementation via Tn7 integration

using the pOGG280 backbone in which hfixL9 was under Plac control. This construct assem-

bled in E. coli but could not be successfully conjugated into Rlv3841. We theorized the protein

was being produced to a toxic level in Rlv3841 due to poor LacI repression. We next attempted

to rectify this problem by driving hfixL9 from the native fixK9 promoter and RBS instead

(fixK9 and hfixL9 likely form an operon). However, this construct could not be transformed
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into E. coli, suggesting PfixK9a was causing toxic levels of hfixL9 production. Finally, we sought

to strike a balance between these two approaches by using the Plac promoter but the native

hfixL9 RBS, in a pOGG250 backbone. This construct assembled in E. coli and could be conju-

gated into Rlv3841 but failed to complement the mutant. It is likely that this promoter-RBS

combination avoided toxicity by reducing hfixL9 production but produced insufficient protein

to achieve complementation.

Microaerobic induction measurements in cultured cells

Rlv3841 strains were first grown on TY slopes with appropriate antibiotics for three days. Cells

were resuspended and washed three times by centrifugation at 5,000 RCF for 10 minutes.

Washed cells were used to inoculate 10 mL liquid UMS cultures to OD600 0.01 and grown

overnight without antibiotics. Cultures were then diluted to OD 0.1 in 400 μL UMS per well in

a 24-well microtiter plate (4titude). A gas-permeable membrane (4titude) was applied to

microtiter plates. Plates were then incubated in a FLUOstar Omega plate reader equipped with

an Atmospheric Control Unit (both produced by BMG) to adjust O2 concentration to 1% and

CO2 concentration to 0.1%. Readings were taken every 30 minutes and plates shaken at 700

rpm in double orbital mode between readings. Induction was measured at 18 hrs post-inocula-

tion, when all cultures had reached stationary phase.

Plate-based measurements

sYFP2 measurements were made on a BMG FLUOstar Omega plate reader using the bottom

optic with a gain setting of 2,000 and orbital averaging enabled (53 readings, 6 mm radius).

Measurements were filter-based with excitation at 520 nm and emission recorded at 540 nm.

Luminescence measurements were made on a Promega GloMax plate reader using the manu-

facturer’s protocol. Luminescence was used for S1 Fig as this reporter construct was already

available.

Plant growth and acetylene reduction

Pisum sativum cv. Avola seeds were surface sterilized using 95% ethanol and 2% sodium hypo-

chlorite before sowing. Plants were inoculated with 1 × 107 cells of the appropriate rhizobial

strain and grown in 1 L beakers filled with sterile medium-grade vermiculite and nitrogen-free

nutrient solution as previously described in a growth room (16h light/8h dark) [137]. Harvest-

ing was 21 days later and acetylene reduction rate was determined as previously described

[138]. All nodules for each plant were counted and their combined mass weighed; acetylene

reduction rates were normalised by total nodule weight.

Bacteroid isolation

Bacteroids were isolated from root nodules after 21 days of plant growth following a differen-

tial spin protocol adapted from Tsukada et al. 2009 [139]. Approximately 100 mg of nodules

were picked per plant. Nodules were immersed in 1 mL of sterile isolation buffer (1 M

K2HPO4, 1 M KH2PO4, 300 mM sucrose, 2 mM MgCl2) and macerated. The mixture was spun

down at 200 RCF for 5 minutes to remove plant debris. The supernatant was transferred to a

fresh tube and spun down at 3,500 RCF for 5 minutes. The supernatant from this second spin

was discarded and the pelleted fraction, containing the isolated bacteroids, was resuspended in

isolation buffer and used for microtiter plate measurements.
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Transcription start site mapping

The TSS data set referenced in this paper can be found in full on the NCBI SRA database, Bio-

Project number PRJNA667846. A publication discussing the data in full is forthcoming. Proto-

col details can be found in S3 Text.

Statistical analysis

All analyses were performed using GraphPad Prism 8 (GraphPad Software). Significant differ-

ences were determined by Student’s t-test or one-way ANOVA followed by Dunnett’s multiple

comparisons post-hoc test correction. A p-value less than 0.05 was considered statistically

significant.

Confocal microscopy

Reporters were constructed by transcriptional fusion of promoters to an ORF of the sYFP2

fluorescent protein. Reporters were subsequently genomically integrated into Rlv3841 strains

using the mini-Tn7 system [134]. Plants were inoculated with marked strains and grown as

described above. After 21 days, nodules were picked and immersed in water then cut in half

longitudinally. Images were taken with an LSM 880 confocal laser-scanning microscope

equipped with the Axio Imager.Z2 (Zeiss), using the manufacturer’s ZEN Black software. A

Plan-Apochromat 10×/0.45 M27 objective (Zeiss) was used. Excitation was at 514 nm with an

Argon laser and emission measurements filtered to a range of 519–572 nm. Acquisitions were

tile scans with 2×3 tiles per image. 31 Z-stack slices were taken for each tile, separated by a

height of 10 μm. Images shown in this publication are maximum-intensity orthogonal projec-

tions produced with the ZEN Blue software (Zeiss).

Figure data

Data for main text Figs 2–5 and S1 and S2 Figs are given in S4 Text. Data for main text Fig 8

are given in S1 Spreadsheet.

Supporting information

S1 Fig. hFixL is required for in planta fixK9a expression in Rlv3841. A reporter (pOPS0136)

was built with the luxCDABE reporter operon fused to the fixK9a promoter. The promoter was

active in isolated WT Rlv3841 bacteroids (OPS0376), but no luminescence above no-reporter

background was recorded in double hfixLmutant bacteroids (OPS0528). Data are averages

(±SEM) from at least four plants, �P< 0.05; by one-way ANOVA with Dunnett’s post-hoc test

for multiple comparisons.

(EPS)

S2 Fig. Complementation of the Rlv3841 fnrN mutant. (A) Acetylene reduction rates; the

activity of the fnrNmutant (LMB648) was 20% of WT Rlv3841. The complemented strain

(OPS2260) fixed at 88% of WT. Nodules colonized by Rlv3841 (B) WT, (C) the complemented

fnrNmutant and (D) the fnrNmutant. Acetylene reduction rates are normalised to total

weight of nodules per plant. Data are averages (±SEM) from seven plants, ns (not significant)

P� 0.05; ����P < 0.0001; by one-way ANOVA with Dunnett’s post-hoc test for multiple com-

parisons. Complementation also restored nodule morphology.

(EPS)

S3 Fig. Simplified map of the Rlv3841 dual sensor oxygen cascade used for modelling.

Only one copy each is included of hfixL, fixK, fxkR and fixNOQP. Both FnrN and FixK can
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positively and negatively regulate expression of fnrN. FxkR negative auto-regulation is not

included in the model. Regulation is indicated with lines ending in arrows (positive regulation)

and ending in blunt ends (negative regulation). Translation is shown as lines ending in circles.

(EPS)

S1 Text. Modelling oxygen regulation in Rlv3841.

(PDF)

S2 Text. Strains, plasmids and primers used in the study.

(PDF)

S3 Text. Further materials and methods details for transcription start site mapping.

(PDF)

S4 Text. Data tables for main text Figs 2–5 and S1 and S2 Figs.

(PDF)

S1 Spreadsheet. Data table for main text Fig 8.

(XLSX)
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latory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39. Mol

Plant-Microbe Interact. 1997; 10: 605–16. https://doi.org/10.1094/MPMI.1997.10.5.605 PMID:

9204566

57. Spiro S, Guest JR. Regulation and over-expression of the fnr gene of Escherichia coli. J Gen Microbiol.

1987; 133: 3279–3288. https://doi.org/10.1099/00221287-133-12-3279 PMID: 2846747

58. Unden G, Trageser M. Oxygen regulated gene expression in Escherichia coli: control of anaerobic res-

piration by the FNR protein. Antonie Van Leeuwenhoek. 1991; 59: 65–76. https://doi.org/10.1007/

BF00445650 PMID: 1854188

59. Jervis AJ, Green J. In vivo demonstration of FNR dimers in response to lower O2 availability. J Bacter-

iol. 2007; 189: 2930–2932. https://doi.org/10.1128/JB.01921-06 PMID: 17277055
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B, et al. Optimizing Rhizobium-legume symbioses by simultaneous measurement of rhizobial competi-

tiveness and N2 fixation in nodules. Proc Natl Acad Sci U S A. 2020; 117: 9822–9831. https://doi.org/

10.1073/pnas.1921225117 PMID: 32317381

107. Capela D, Filipe C, Bobik C, Batut J, Bruand C. Sinorhizobium meliloti differentiation during symbiosis

with Alfalfa: a transcriptomic dissection. Mol Plant-Microbe Interact. 2006; 19: 363–372. https://doi.

org/10.1094/MPMI-19-0363 PMID: 16610739

108. Ryu M-H, Zhang J, Toth T, Khokhani D, Geddes BA, Mus F, et al. Control of nitrogen fixation in bacte-

ria that associate with cereals. Nat Microbiol. 2020; 5: 314–330. https://doi.org/10.1038/s41564-019-

0631-2 PMID: 31844298

109. Wongdee J, Boonkerd N, Teaumroong N, Tittabutr P, Giraud E. Regulation of nitrogen fixation in Bra-

dyrhizobium sp. strain DOA9 involves two distinct NifA regulatory proteins that are functionally redun-

dant during symbiosis but not during free-living growth. Front Microbiol. 2018; 9: 1–11. https://doi.org/

10.3389/fmicb.2018.00001 PMID: 29403456

110. Hu Y, Ribbe MW. Nitrogenase assembly. Biochim Biophys Acta—Bioenerg. 2013; 1827: 1112–1122.

https://doi.org/10.1016/j.bbabio.2012.12.001 PMID: 23232096

111. Monroe JD, Owens TG, LaRue TA. Measurement of the fractional oxygenation of leghemoglobin in

intact detached pea nodules by reflectance spectroscopy. Plant Physiol. 1989; 91: 598–602. https://

doi.org/10.1104/pp.91.2.598 PMID: 16667074

112. Gourret J-P, Fernandez-Arias H. Etude ultrastructurale et cytochimique de la différenciation des bac-
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sors for in vivo spatiotemporal mapping of root secretion. Plant Physiol. 2017; 174: 1289–1306.

https://doi.org/10.1104/pp.16.01302 PMID: 28495892

132. Poole PS, Schofield NA, Reid CJ, Drew EM, Walshaw DL. Identification of chromosomal genes

located downstream of dctD that affect the requirement for calcium and the lipopolysaccharide layer of

Rhizobium leguminosarum. Microbiology. 1994; 140: 2797–2809. https://doi.org/10.1099/00221287-

140-10-2797 PMID: 8000544

133. Buchanan-Wollaston V. Generalized transduction in Rhizobium leguminosarum. J Gen Microbiol.

1979; 112: 135–142. https://doi.org/10.1099/00221287-112-1-135

134. Choi KH, Schweizer HP. mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas

aeruginosa. Nat Protoc. 2006; 1: 153–161. https://doi.org/10.1038/nprot.2006.24 PMID: 17406227

135. Choi KH, Mima T, Casart Y, Rholl D, Kumar A, Beacham IR, et al. Genetic tools for select-agent-com-

pliant manipulation of Burkholderia pseudomallei. Appl Environ Microbiol. 2008; 74: 1064–1075.

https://doi.org/10.1128/AEM.02430-07 PMID: 18156318

136. Quandt J, Hynes MF. Versatile suicide vectors which allow direct selection for gene replacement in

Gram-negative bacteria. Gene. 1993; 127: 15–21. https://doi.org/10.1016/0378-1119(93)90611-6

PMID: 8486283

137. Poole PS, Blyth A, Reid CJ, Walters K. Myo-inositol catabolism and catabolite regulation in Rhizobium

leguminosarum bv. viciae. Microbiology. 1994. https://doi.org/10.1099/00221287-140-10-2787

138. Allaway D, Lodwig EM, Crompton LA, Wood M, Parsons R, Wheeler TR, et al. Identification of alanine

dehydrogenase and its role in mixed secretion of ammonium and alanine by pea bacteroids. Mol

Microbiol. 2000. https://doi.org/10.1046/j.1365-2958.2000.01884.x PMID: 10792736

139. Tsukada S, Aono T, Akiba N, Lee KB, Liu C Te, Toyazaki H, et al. Comparative genome-wide tran-

scriptional profiling of Azorhizobium caulinodans ORS571 grown under free-living and symbiotic con-

ditions. Appl Environ Microbiol. 2009; 75: 5037–5046. https://doi.org/10.1128/AEM.00398-09 PMID:

19542345

PLOS GENETICS Multi-sensor oxygen regulation in the Rhizobium-legume symbiosis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009099 February 4, 2021 27 / 27

https://doi.org/10.1002/anie.201403777
http://www.ncbi.nlm.nih.gov/pubmed/25044647
https://doi.org/10.1111/j.1365-2958.2009.07037.x
https://doi.org/10.1111/j.1365-2958.2009.07037.x
http://www.ncbi.nlm.nih.gov/pubmed/20487293
https://doi.org/10.1128/jb.174.18.5803-5813.1992
https://doi.org/10.1128/jb.174.18.5803-5813.1992
http://www.ncbi.nlm.nih.gov/pubmed/1522059
https://doi.org/10.1128/JB.181.7.2102-2109.1999
http://www.ncbi.nlm.nih.gov/pubmed/10094687
https://doi.org/10.1038/nbt923
http://www.ncbi.nlm.nih.gov/pubmed/14704707
https://doi.org/10.1038/nature01931
http://www.ncbi.nlm.nih.gov/pubmed/12955144
https://doi.org/10.1038/s41598-017-01634-2
https://doi.org/10.1038/s41598-017-01634-2
http://www.ncbi.nlm.nih.gov/pubmed/28469244
https://doi.org/10.1111/j.1558-5646.2008.00582.x
http://www.ncbi.nlm.nih.gov/pubmed/19087187
https://doi.org/10.3389/fmicb.2019.01642
http://www.ncbi.nlm.nih.gov/pubmed/31379789
https://doi.org/10.1128/AEM.71.8.4602
https://doi.org/10.1128/AEM.71.8.4602
https://doi.org/10.1099/00221287-84-1-188
http://www.ncbi.nlm.nih.gov/pubmed/4612098
https://doi.org/10.1104/pp.16.01302
http://www.ncbi.nlm.nih.gov/pubmed/28495892
https://doi.org/10.1099/00221287-140-10-2797
https://doi.org/10.1099/00221287-140-10-2797
http://www.ncbi.nlm.nih.gov/pubmed/8000544
https://doi.org/10.1099/00221287-112-1-135
https://doi.org/10.1038/nprot.2006.24
http://www.ncbi.nlm.nih.gov/pubmed/17406227
https://doi.org/10.1128/AEM.02430-07
http://www.ncbi.nlm.nih.gov/pubmed/18156318
https://doi.org/10.1016/0378-1119%2893%2990611-6
http://www.ncbi.nlm.nih.gov/pubmed/8486283
https://doi.org/10.1099/00221287-140-10-2787
https://doi.org/10.1046/j.1365-2958.2000.01884.x
http://www.ncbi.nlm.nih.gov/pubmed/10792736
https://doi.org/10.1128/AEM.00398-09
http://www.ncbi.nlm.nih.gov/pubmed/19542345
https://doi.org/10.1371/journal.pgen.1009099

