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Abstract— Small non-coding RNAs (sRNA) are a key bacte-
rial regulatory mechanism that has yet to be fully exploited in
synthetic gene regulatory networks. In this paper a linear design
methodology for gene regulatory networks presented previously
is extended for application to sRNAs. Standard models of
both sRNA inhibition and activation are presented, linearised
and transformed into the frequency domain. We demonstrate
how these mechanisms can emulate subtraction and minimum
comparator functions in specific parameter regimes. Finally,
the design of a genetic feedback circuit is included, illustrating
that sRNAs can be used to improve the performance of a range
of synthetic biological systems.

I. INTRODUCTION

Synthetic biology is an emerging discipline concerned
with the rational engineering of biological organisms to
address problems in fields ranging from manufacturing to
healthcare [1]. This is typically achieved via the re-purposing
of natural biological mechanisms, though this can prove
challenging in many circumstances: synthetic systems are
easily perturbed by fluctuations in the cellular environment
[2], and may have unforeseen interactions with other cellular
processes [3]. To address these challenges, in recent years
much work has focused on the development of synthetic
biological feedback control systems [4], analogues of which
are utilised extensively in control engineering to overcome
problems associated with noise and uncertainty [5].

Inspired by the feedback architectures found in natural
biological systems, synthetic biologists have taken a range of
approaches to implementing control structures to improve the
reliability of their designs: Feedback systems have been built
using networks of transcription factors [6], [7], interacting
nucleic acid sequences [8], in silico control systems that
measure and regulate cellular behaviour [9], and via inter-
action with existing cellular processes [10], [11]. Many of
these designs have demonstrated favourable properties, such
as robustness to both cellular fluctuations and the variability
in the behavioural properties of their component parts [4],
[12], [13]. Theoretical treatments have provided some guide-
lines for the design of such systems, outlining architectural
motifs for which components must then be selected for
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implementation [14], [15]. As synthetic biological feedback
systems mature, and their range of potential applications
grows, it will be increasingly necessary for such constructs
to utilise application-specific components that can optimally
interface with a given system [16]. This motivates our current
work, which develops a theoretical grounding for a small
non-coding RNAs (sRNA) implementation of subtraction
and minimum comparator junctions. These junctions are
particularly useful for feedback controllers, which require
a subtraction junction in order to compute the feedback
error. This has motivated the development of a range of
architectures for their implementation [17], [18], [19], though
realising a two-sided junction (one that can produce both
positive and negative outputs depending on the difference of
inputs) remains challenging [20].

sRNAs find widespread use as a natural regulatory mech-
anism in bacteria [21]. They utilise the complementary base
pairing between mRNA molecules to perform a range of
functions; they can alter mRNA secondary structures to
activate expression of a protein, or cover (thereby preventing
the recognition of) parts of an mRNA sequence to repress
expression [22], [23]. sRNAs lend themselves to application
in synthetic biological circuits because of the ease with which
they can be designed and implemented; the interactions
between complementary RNA sequences can be predicted
and tuned, and due to the variety of possible sequences many
orthogonal sRNA regulatory mechanisms can operate within
a cell simultaneously [24], [25], [26]. The sRNAs studied
in this work can be broken down into two major parts, a
target binding region, and a Host-Factor Bacteriophage QB
(Hfq) protein binding region (with an overlapping terminator
region) [27]. The first region, which is responsible for
binding the target mRNA, can be designed using a range of
binding strategies [25], [28] and tailored to avoid off-target
effects [29]. The second region recruits the Hfq chaperone
(whose presence slows the degradation of sRNA [30]), which
is responsible for catalysing the sRNA’s pairing with its target
mRNA [27]. Design of the second region is more restricted,
as (in the sRNAs we consider) it must recruit and bind
the Hfq protein, and so it is generally adapted from natural
scaffolds [25].

In this paper we design two-input sRNA/mRNA regulatory
systems, which are assumed to work in a regime where
catalysis by the Hfq chaperone is efficient. The system inputs
are transcription-factor proteins which regulate expression
rates of sRNA/mRNA respectively. In each case the targeted
mRNA produces a protein (the system’s output), which could
be chosen as a fluorescent indicator for testing purposes, or a
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transcription factor to interface with downstream processes.
We extend the linear design framework described in [31]
to analyse systems that employ sRNA in both an inhibitory
and activatory role, and demonstrate that these can be used to
approximate subtraction and minimum comparator junctions.

In Section II we develop a four-state mathematical model
for an sRNA repression system, and demonstrate its use as a
subtraction junction. We examine the steady state behaviour
of our model, and then linearise it to derive transfer functions
between each input and an output protein’s concentration.
We provide a block-diagram framework for this system, and
perform model-reduction to derive a simplified two-state
model which demonstrates a similar dynamic response. In
Section III a similar analysis of an sRNA activation system is
performed, demonstrating its use as a minimum comparator.
Section IV provides an example of our system’s implemen-
tation, describing a closed-loop feedback architecture that
utilises an activating sRNA to regulate a gene’s expression.
Finally, Section V concludes the paper.

II. SRNA REPRESSION
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Fig. 1: The sRNA inhibition mechanism (Hfq not shown).
The bottom gene is the inhibitory sRNA gene which is
transcribed into its active RNA form. Its target is the top
operon, encoding a protein, which is first transcribed and then
translated into protein. The active sRNA blocks translation
by binding the target mRNA (covering the RBS and start
codon), forming an inactive heteroduplex.

We consider a two-input system that uses sRNA to bind
a target mRNA, thereby controlling expression of a protein
(Fig. 1). The system’s inputs are transcription factors which
regulate the production rates of sRNA and mRNA separately,
and its output is the concentration of the protein produced
by the target mRNA. A differential equation model of this
system takes the form:

ṁ = Γ1 − δmm− kmr, (1a)
ṙ = Γ2 − δrr − kmr, (1b)

ṁr = kmr − δmr
mr, (1c)

ṗ = αpm− δpp, (1d)

where p is the concentration of produced protein, m is the
target mRNA concentration, r is sRNA concentration, and
mr is the concentration of repressed heteroduplex formed
by the target mRNA and sRNA. αp is the translation rate

of protein from the un-repressed mRNA, and δp/δm/δr/δmr

are the degradation rates of protein/mRNA/sRNA/repressed
heteroduplex respectively. Finally, k is the rate with which
mRNA and sRNA combine to form the inhibited heterodu-
plex (which we assume to be irreversible, so that degradation
occurs more quickly than dissociation), and Γi are activating
transcription factor-dependent Hill functions given by:

Γi =
βi[ui]

ni

Kni
i + [ui]ni

(2)

where βi are scaling factors for the maximal transcription
rate, ni are hill coefficients, and Ki are the dissociation
constants of the activating transcription factors ui. The
derivative of (2) evaluated at a given u∗i is:

γ∗i = βi
niK

ni
i u

ni−1
i

(Kni
i + uni

i )2

∣∣∣∣
ui=u∗

i

(3)

If a repressing transcription factor is used instead, then the
form of (2) changes slightly (in the numerator, ui is replaced
by Ki), and the expression for γ∗i in (3) is multiplied by −1.
For the remainder of Section 2 we disregard (1c) since mr

has no impact on the system’s output, p.

A. Parameter Selection

Values for the parameters in (1) and (2) are chosen in
line with those used in [32]. The transcription rate for the
output protein P is set as αp = 0.3 nM min−1. The scaling
factors for transcription in the Hill functions (2) are set equal
as β1,2 = 1 nM min−1. We assume the system operates
with an abundance of Hfq protein, such that free sRNA is
guarded from degradation by the Hfq chaperone [30]. We
thus set the degradation rate of sRNA equal to that of the
protein (which we assume is primarily removed by dilution
due to cell growth), with a value δp = δr = 0.03 min−1

(corresponding to a cell doubling time of ∼ 21 min [32]).
We assume that the degradation rates of free mRNA and the
mRNA-sRNA complex are equal, since we do not expect that
the degradation rate of mRNA will be substantially altered
by the binding of sRNA (with appropriately chosen Hfq-
binding sRNA scaffold), and so set δm = δmr

= 0.14
min−1. Finally, the sRNA-mRNA binding rate constant is
set as k = 1 nM−1min−1, the Hill function coefficient is
set as n1,2 = 2 in line with that found for many common
transcription factors [33], and an intermediate value [34]
for the transcription-factor dissociation constant is chosen,
K1,2 = 10 nM .

B. Steady-state Response

For an input combination u∗ = [u∗1, u
∗
2] the system in (1)

has a steady-state equilibrium x∗ = [m∗, r∗, p∗] given by:

m∗ =
−δmδr + k(Γ∗

1 − Γ∗
2) +

√
ω

2δmk
, (4a)

r∗ =
Γ∗
2

δr + km∗ , (4b)

p∗ =
αp
δp
m∗, (4c)
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Fig. 2: Steady state output (p∗ in (4c)) for the full model (1)
of sRNA repression. This system functions as a subtraction
junction for the two inputs u1 and u2.

γ∗1
1

s+ kr∗ + δm

αp
s+ δp

−km∗ −kr∗

γ∗2
1

s+ km∗ + δr

U1(s) + M(s) P (s)

+ U2(s)+R(s)

+

Fig. 3: Block diagram for the sRNA inhibition mechanism

where ω = (δmδr + k(Γ∗
2 − Γ∗

1))2 + 4kδmδrΓ
∗
1. Here

the system output (p∗) depends on the difference between
induced mRNA and sRNA production rates (Γ∗

1−Γ∗
2), which

provides subtraction junction-like behaviour. However, due to
the non-linear dependence of Γi on ui, a direct subtraction
of transcription-factor concentrations is not achieved. The
system’s steady-state output (p) response for varying inducer
concentrations is shown in Fig. 2, demonstrating slight
deviation from a linear subtraction u1 − u2.

C. Frequency Response

We can re-define (1) in terms of perturbations around the
equilibrium values x̃ = x − x∗ and ũ = u − u∗ to derive a
linear approximation to our system:

˙̃m = γ∗1 ũ1 − (kr∗ + δm)m̃− km∗r̃, (5a)
˙̃r = γ∗2 ũ2 − (km∗ + δr)r̃ − km̃r∗, (5b)
˙̃p = αpm̃− δpp̃, (5c)

We apply Laplace transforms to (5) to re-cast this system of
equations in the frequency domain, for which transfer func-
tions are expressed illustrated in Fig. 3. These expressions
can be manipulated to find the transfer function between each
of the inputs and the output, giving:

G1(s) =
P (s)

U1(s)
=

αpγ
∗
1 (s+ δr + km∗)

(s+ δp)(s+ s+)(s+ s−)
,

G2(s) =
P (s)

U2(s)
=

−km∗αpγ
∗
2

(s+ δp)(s+ s+)(s+ s−)
,

s± =
1

2
(δm + kr∗ + δr + km∗)± 1

2

√
d,

d = (δm + kr∗ − δr − km∗)2 + 4k2m∗r∗,

(6)

We observe that these two transfer functions (from U1

and U2 to the output P ) have opposite sign, indicating
that this system can be used as a subtraction junction. In
both cases the (s + δp) term presents the dominant pole
(since for the parameter and input values chosen δp � s±)
and will hence dictate the approximate response time for
our system. For this pair of transfer functions we observe
minimal response (Gi(0) ∼ 0) in the regime in which mRNA
induction level is small compared to sRNA (u∗1 < u∗2), since
all mRNA is bound by sRNA (and so no output protein
is produced). The subtraction junction is thus one-sided
[20], though this could be overcome via architectures that
implement a second similar system within the same cell that
produces a “negative” output [18] (for example, two systems
could produce proteins that activate or repress a downstream
protein’s expression respectively). sRNA (compared to other
biochemical implementations) is ideal for achieving this,
since orthogonal sRNA repressors with similar behavioural
properties can be created. A major biological limitation of
our system is that due to the functional form with which
inputs are applied (the Hill function in (2)), the sensitivity to
an input signal (Ui) varies according to a non-linear function
of the given input’s steady-state value (u∗i ). Ideally, we desire
a subtraction junction where the DC gain is balanced for
signals at either input. Equating the expressions for G1(0)
and G2(0), and recalling that that km∗ � δr, we find this
is true if γ∗1 ≈ γ∗2 . Thus, in order to tune the weighting of
the two inputs to this subtraction junction the parameters βi
in (2) can be adjusted (via modification of the transcription
factor’s promoter binding region) to achieve some parity in
the values γ∗i if substantially differing input levels (u∗i ) are
to be combined.

D. Non-linear Analysis

To simplify our system (thereby reducing the number
of free parameters, and aiding its utilisation as part of
larger models) we can non-dimensionalise (1) and reduce
the number of states by making assumptions about relative
parameter values. Following the assumptions made in Section
II-A we set δp = δr, and since degradation rates of mRNA
are substantially greater than that of protein we have that
δp
δm
� 1. Setting p = ψp̂, m = φm̂, r = ηr̂, t = θt̂ we have

from (1):

ε ˙̂m = 1− m̂−Kmm̂r̂, (7a)
˙̂r = 1− r̂ −Krm̂r̂, (7b)
˙̂p = m̂− p̂, (7c)
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Fig. 4: The sRNA activation mechanism (Hfq not shown).
Here the target gene produces a cis-repressed mRNA that
folds upon itself, forming a hairpin that blocks access to its
RBS and/or Start Codon and thereby inhibiting translation.
When expressed, an activating sRNA opens up the hairpin
in the target mRNA allowing access by the ribosome and
translation of the gene encoded in the mRNA.

ψ =
αpΓ1

δmδp
, φ =

Γ1

δm
, θ = δ−1

p , η =
Γ2

δp
,

Kr =
kΓ1

δpδm
, Km =

kΓ2

δpδm
, ε =

δp
δm

.

(8)

In the limit ε→ 0 (7a) dictates that m̂ is in quasi-equilibrium.
This is expected for a system operating on two time-scales
[35], where the mRNA dynamics (fast time-scale) quickly
adjust to changes in the protein dynamics (slow time-scale).
Thus (7) can be expressed in two ODEs by using (7a) to
eliminate m̂, which when transformed back into the original
variables gives:

ṙ = Γ2 −
Γ1kr

δm + kr
− δpr, (9a)

ṗ =
αpΓ1

δm + kr
− δpp, (9b)

III. SRNA ACTIVATION

We now consider a two-input system that uses sRNA
to bind a target mRNA, which by disrupting its secondary
structure and revealing a RBS forms an activated heterodu-
plex (Fig. 4). As before the system takes two transcription
factors as input, and its output is the concentration of protein
produced by the activated heteroduplex mRNA. We can
model this system’s dynamics using a set of differential
equations of the form:

ṁ = Γ1 − δmm−Kmr, (10a)
ṙ = Γ2 − δrr −Kmr, (10b)

ṁr = Kmr − δmr
mr, (10c)

ṗ = αp2mr − δpp, (10d)

where variables are as defined in (1), and αp2 is the trans-
lation rate of protein from the activated heteroduplex which
we will set equal to αp.

A. Steady-state Response

For an input combination u∗ = [u∗1, u
∗
2] the system (10) has

a steady-state equilibrium x∗ = [m∗, r∗,m∗
r , p

∗] given by:

m∗ =
−δmδr + k(Γ∗

1 − Γ∗
2) +

√
ω

2δmk
, (11a)

r∗ =
Γ∗
2

δr + km∗ , (11b)

m∗
r =

δmδr + k(Γ∗
1 + Γ∗

2)−
√
ω

2δmr
k

, (11c)

p∗ =
αp2
δp

m∗
r , (11d)

where ω = (δmδr+k(Γ∗
2−Γ∗

1))2 +4kδmδrΓ
∗
1. The system’s

steady-state output (p) response for varying inducer concen-
trations is shown in Fig. 5, demonstrating that the system’s
protein output is (approximately) linearly proportional to
whichever input is smaller. The system’s output thus approx-
imates a minimum comparator (the function min(u1,u2)),
though this is difficult to intuit from (11).

Fig. 5: Steady state output (p∗ in (11d)) for the full
model (10) of sRNA activation. This system functions as a
minimum comparator; its output approximates the function
min(u1,u2).

B. Frequency Response

We can re-define (10) in terms of perturbations around the
equilibrium values x̃ = x − x∗ and ũ = u − u∗ to derive a
linear approximation to our system:

˙̃m = γ∗1 ũ1 − (kr∗ + δm)m̃− km∗r̃, (12a)
˙̃r = γ∗2 ũ2 − (km∗ + δr)r̃ − km̃r∗, (12b)

˙̃mr = km̃r∗ + km∗r̃ − δmrm̃r, (12c)
˙̃p = αp2m̃r − δpp̃. (12d)

We apply Laplace transforms to (12) to re-cast this system
of equations in the frequency domain, for which transfer
functions are expressed as a block diagram in Fig. 6. These
expressions can be manipulated to find the transfer function
between each of the inputs and the output, giving:

5331



γ∗1
1

s+Kr∗ + δm
−Kr∗

γ∗2
1

s+Km∗ + δr

1

s+ δmr

αp2
s+ δp

−Km∗

U1(s) +

M(s)

Mr(s)

P (s)

+U2(s) +

R(s)

+

-
-

Fig. 6: Block diagram for the sRNA activation mechanism

G1(s) =
P (s)

U1(s)
=

αp2γ
∗
1kr

∗(s+ δr)

(s+ δmr
)(s+ δp)(s+ s+)(s+ s−)

,

G2(s) =
P (s)

U2(s)
=

αp2γ
∗
2km

∗(s+ δm)

(s+ δmr
)(s+ δp)(s+ s+)(s+ s−)

,

(13)

with s± defined as in (6). In this case we find that either
transfer function (from U1 and U2 to the output) is max-
imised at steady state when the alternate input is large. For
example, G1(s) > G2(s) when m∗ < r∗ (which corresponds
to u∗1 < u∗2).

C. Non-linear Analysis

To reduce our system’s order, in addition to the assump-
tions made in Section II-D we now set δm = δmr

(as
discussed in Section II-A). Setting p = ψp̂, ,m = φm̂,
r = ηr̂, mr = βm̂r, t = θt̂ we have from (10):

ε ˙̂m = 1− m̂−Kmm̂r̂, (14a)
˙̂r = 1− r̂ −Krm̂r̂, (14b)

ε ˙̂mr = m̂r̂ − m̂r, (14c)
˙̂p = m̂r − p̂. (14d)

where

ψ =
αp2kΓ1Γ2

δ2mδ
2
p

, β =
kΓ1Γ2

δ2mδp
φ =

Γ1

δm
, η =

Γ2

δp
,

Kr =
kΓ1

δpδm
, Km =

kΓ2

δpδm
, θ = δ−1

p , ε =
δp
δm

,

(15)

In the limit ε→ 0 both m and mr are in quasi-equilibrium,
allowing (14a) and (14c) to be used to eliminate m̂ and
m̂r, which after transforming back into the original variables
gives:

ṗ =
αp2
δm

Γ1kr

δm + kr
− δpp, (16a)

ṙ = Γ2 −
Γ1kr

δm + kr
− δpr, (16b)
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Fig. 7: An activating sRNA negative feedback architecture,
which “closes the loop” around the two-input system in Fig.
4 by producing a protein that represses the expression of
sRNA.

IV. EXAMPLE: SRNA ACTIVATION FEEDBACK

To demonstrate the utility of our proposed sRNA regu-
latory architectures we present an example of a feedback
system based on the sRNA activation system described in
Section III. To “close the loop” we choose the output protein
of our system to be a repressing transcription factor that
interacts with the promoter of an activating sRNA, thus
taking the place of input u2 (Fig. 7). This system retains
a single input, which regulates production of the target
mRNA and through that the output protein level. For a
practical implementation of this system the target mRNA
may be designed to be polycistronic (or employ a fusion
protein), producing both the transcription factor protein that
regulates sRNA production, as well as a secondary protein of
interest whose production is to be regulated. We simulate this
example sRNA feedback system using the models described
in Section III by setting u2 = p. The closed-loop (CL)
feedback architecture (Fig. 7) demonstrates a number of
benefits when compared to the open-loop (OL) system (Fig.
4), including reduced sensitivity to fluctuations in model
parameters (Fig. 8a), and a faster response (Fig. 8b).

V. CONCLUSION

In this paper we have described subtraction and min-
imum comparator junctions (which are a key component
in many common control architectures) based upon sRNA-
mRNA interactions that repress or activate a specific mRNA’s
translation. By analysing differential-equation models of
these systems we have identified parameter regimes suitable
for their operation, and we have derived reduced models
that are valid for typical experimental conditions. Finally,
we presented an example of the sRNA activation system’s
implementation, demonstrating that negative feedback can
provide a range of performance improvements for synthetic
biological systems.
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