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Abstract— Synthetic biology is a rapidly expanding field at
the interface of the engineering and biological sciences which
aims to apply rational design principles in biological contexts.
Many natural processes utilise regulatory architectures that
parallel those found in control and electrical engineering,
which has motivated their implementation as part of synthetic
biological constructs. Tools based upon control theoretical
concepts can be used to design such systems, as well as to
guide their experimental realisation. In this paper we provide
examples of biological implementations of negative feedback
systems, and discuss progress made toward realisation of other
feedback and control architectures. We then outline major
challenges posed by the design of such systems, particularly
focusing on those which are specific to biological contexts and
on which feedback control can have a significant impact. We
explore future directions for work in the field, including new
approaches for theoretical design of biological control systems,
the utilisation of novel components for their implementation,
and the potential for application of automation and machine-
learning approaches to accelerate synthetic biological research.

I. INTRODUCTION

Synthetic biology is a rapidly expanding field at the
interface of the engineering and biological sciences which
aims to apply rational design principles in biological
contexts. Synthetic biological systems can be designed to
tackle real-world problems ranging from environmental
cleanup to chemical synthesis [1], and from medical
sensing to decision making and computation [2], [3]. Early
breakthroughs in the field were achieved via the re-wiring
of natural genetic components [4], [5], [6], followed by
extensive trial-and-error experimentation to find appropriate
parameter regimes for their operation. Though early efforts
demonstrated the broad capabilities of synthetic biology,
the field is far from reaching its potential [7]. Much must
still be done to develop tools and design methodologies that
account for the unreliable and often unpredictable behaviour
of engineered biological systems [8], [9], which makes their
application challenging in all but the most ideal conditions.

Control architectures similar to those traditionally used
in control engineering [10], [11] have been found to
govern a range of regulatory processes in natural systems.
For example, autoregulatory architectures are ubiqutous
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in both prokaryotes [12] and eukaryotes [13], which
has motivated their synthetic implementation [12], [14],
[15]. Other frequently studied natural control systems
include the osmoregulatory mechanism in yeast [16] and the
chemotaxis process in bacteria [17], both of which have been
demonstrated to rely on architectures relevant to integral
feedback control [18]. Synthetic control architectures
that replicate the capabilities of their natural counterparts
have been utilised for purposes including regulation of
the unreliable nature of biological systems [19], and
management of host organisms to boost their capabilities
as bio-factories [20]. These synthetic control systems
have been implemented using a diversity of biological
components (including DNA, RNA, and Protein [15],
[21], [22]), which can be combined to create architectures
that operate on varying time-scales [23], [24] and species
concentrations [25]. Though synthetic control systems have
demonstrated useful properties in isolation their practical
implementation as part of larger synthetic biological designs
remains challenging [26], for reasons including a lack of
systematic design tools or means for reliable interfacing
between biological sub-systems [27].

Recent efforts to address these shortcomings have
focused on standardisation of design processes and
detailed characterisation of biological components [28].
This has included development of libraries of compatible
biological parts that can be automatically assembled to
provide computational functions [29], as well as design
methodologies for the creation of genetic circuits that
achieve common control goals such as adaptation and
disturbance rejection [30], [31]. To further advance these
designs it will be necessary to develop systems that
approximate the fundamental components of traditional
control systems, including integration, gain, and summation
junctions [32], [33], which can be used to build Lead-Lag
[27], PID [25], or more advanced controllers. Recent
progress in this diretion has included demonstration of the
first synthetic cellular integral feedback control system [34].
The selection of particular biological system architectures
that replicate these functions and are in some sense optimal
remains a major challenge, which is further complicated by
the non-ideal interactions between components (for which
load driver-type devices have recently been developed [35]).
There is thus substantial scope for the development of
theoretical design requirements and guidelines for biological
control systems, which could then be used to inform their
implementation.
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Fig. 1: An activating sRNA negative feedback architecture
[36]. An inducer molecule U1 controls the production rate
of an mRNA which forms a hairpin secondary structure
preventing access to its Ribosome Binding Site (RBS, green),
inhibiting production of a protein-encoding gene (orange).
In the presence of the corresponding sRNA this structure
is altered due to base-pair binding between the sRNA and
mRNA, allowing a protein to be produced. This protein
down-regulates the production of sRNA (higher protein con-
centrations cause a decrease in sRNA production), forming
a negative feedback loop.

In this tutorial paper we aim to provide an outline of
the past progress and future challenges that lie at the
intersection of control engineering and synthetic biology.
We start in Section II by reviewing progress made toward
the implementation of feedback architectures in biological
contexts, before discussing other concepts from control
engineering that have been adapted by synthetic biology
in Section III. In Section IV the challenges posted by the
design and implementation of such systems are described.
In Section V potential directions for future work in the field
are discussed, before the paper is concluded in Section VI.

II. FEEDBACK CONTROL IN SYNTHETIC BIOLOGY

The biological implementation of feedback control has
been an ongoing goal of synthetic biology [37], [19],
with early efforts focusing on its most elementary form,
negative auto-regulation. These synthetic architectures
demonstrated an ability to speed system response times,
reduce noise, and linearise dose-responses [12], [14], [15],
and have found practical implementation in metabolic
engineering [38], [39]. Recent work has developed negative
feedback systems using a diversity of genetic components
[25], [40], including sRNA-based transcriptional regulation
(Figure 1), integrase/excisionase based stochastic feedback
(Figure 2), and transcription factor networks (Figure 3).
Multicellular feedback control strategies which split modular
control systems between communicating cellular hosts have
also been demonstrated [41], which can improve system
robustness and reduce the complexity of the synthetic
system that must be sustained within each individual cell.
Inter-cellular control strategies that utilise a variety of
biological processes have been engineered, demonstrating
their ability to control synchronised behaviours across a cell

population [42], [43].

RNA based regulatory networks have been a recent focus
of synthetic biological research due to their adaptability
and ease of implementation [44], [45], [46], [47]. At a
fundamental level they utilise the complementary base-
pairing between RNA strands to influence the rate at which
the protein a gene encodes is read [48]. Such systems
can be used to build relatively fast-acting feedback loops
(Figure 1), and provide a means for realising summing
junctions in biological contexts [36]. Systems based on
the similar principle of DNA strand complementarity have
been developed both theoretically and experimentally [49],
[50], [51], and can be adapted for implementation of
feedback control [22], [33]. Though the design of synthetic
biological devices that utilise complementarity in such a
way is conceptually straight-forward, challenges remain in
the accurate a priori prediction of their behaviour, due to
factors including their tendency to form complex secondary
structures which impact their function [52].

Integrase proteins, which are used by viruses to integrate
their genetic code with that of an invaded cell, can be
re-engineered to flip a sequence of DNA between two
specific recognition sites [54]. The recognition sites are
(predictably) changed by this process, with the reverse
flipping operation (to regain the DNA segment’s original
orientation) only occurring in the presence of a secondary
protein (an excisionase). The presence (and concentration)
of excisionase can thus be used to form a negative feedback
loop by linking its expression to integrase-mediated DNA
flipping (Figure 2). Such systems have been shown to
reduce variability in the expression of genes under their
control [53], which arise due to fluctuations in the rate at
which genes are expressed between cells. Such variability
between cells, which emerges due to both their internal
processes and external environment [55], causes synthetic
biological systems to behave unreliably, thus making its
regulation desirable in many contexts [11].

Transcription factors have been recently used to
implement antithetic integral feedback (AIF) [34], a way
of realizing integral feedback that is particularly relevant to
biomolecular networks [56]. In the antithetic topology, the
regulation is carried out by two controller species, namely
an actuator species (denoted Z1) and a sensor species
(denoted Z2). A key feature of AIF is that the controller
and the actuator annihilate each other, i.e. they abolish each
other’s biological activity upon reacting, for example by
forming a high-affinity, biologically inert dimer.

The AIF circuit was implemented in Escherichia coli
to control the expression of a protein of interest, which
we denote Y . The promoter PZ1

that responds to the
actuator species drives a bicistronic construct consisting of
the gene that codes for Y and of a second gene coding
for a fluorescent protein that is used as a proxy for Y .
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a)

b)

Fig. 2: An integrase-based negative feedback architecture,
described in [53]. a) The system uses an integrase protein
to flip a piece of DNA (top) framed by two recognition sites
(yellow/blue triangles). Once this section of DNA is flipped
(bottom) its contained reporter protein (Green Fluorescent
Protein, GFP) and the corresponding excisionase (XIS) are
produced. Together, integrase and the now-expressed exci-
sionase can flip the DNA between the two new recognition
sites back to the original DNA orientation. This system
represents a negative feedback architecture that regulates the
concentration of GFP/XIS, since the rate of reverse flipping
is dependent on XIS concentration. b) Experimentally mea-
sured data demonstrating that the level of GFP fluorescence
per cell is less variable (error bars denote the standard
deviation in fluorescence for three bacterial colonies) in the
feedback system described in a) when compared to a similar
system that does not produce excisionase (meaning reverse
DNA flipping does not occur).

The protein Y also implements the feedback, as variations
in the concentration of Y are reflected in variations of
activity of its cognate PY promoter, which in turn drives
the gene for the sensor species. The response of PY to Y
can be adjusted with an inducer, referred to as I2: higher
I2 concentrations correspond to higher PY activity for
a given Y concentration. The expression of the actuator
protein Z1 is controlled by the inducible promoter PI1 ,
which can be regulated by another inducer I1. Higher
concentrations of I1 result in higher PI1 activity and
increased production of the actuator species Z1. I1 and I2
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Fig. 3: Antithetic integral feedback in E. coli [34]. (a)
Circuit schematic. Rounded rectangles indicate genes, pur-
ple rectangles show degradation tags, circles denote inducers.
(b) Setpoint tunability. Steady-state fluorescence for cells
containing the closed-loop AIF circuit grown in varying
concentrations of inducers I1 and I2 (average of 2 replicates).
The numbers indicate percentage of the maximal expression
level.

can be used to tune the setpoint of the circuit, which is
determined by the ratio of the production rates of Z1 and
Z2 [56]. To test the disturbance rejection abilities of the
circuit, a negative disturbance was implemented using an
orthogonal protease denoted W . W is driven by a third
inducible promoter (PI3 ), controlled by the inducer I3. W
specifically recognized its cognate degradation tags, copies
of which have been appended to C-termini of Y and of the
fluorescent protein. As a result, when W is induced, the
degradation rates of Y and of the fluorescent protein are
increased. The circuit is summarized in Fig. 3a. We refer
to [34] for the specifics of the biological parts that were used.

The circuit was tested for its response to the two
inducers I1 and I2. These were used to independently
and systematically tune expression levels of Z1 and Z2,
respectively, in all combinations. As expected, increasing
Z1 production corresponded to an increase in fluorescence,
whereas increasing Z2 production corresponded to a
decrease (Fig. 3b). Furthermore, to show the effect of
integral feedback, perfect or near-perfect adaptation was
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demonstrated in the presence of a persistent disturbance. The
steady-state fluorescence was measured with and without
induction of the protease W , in both the AIF closed-loop
circuit and in an open-loop control lacking the feedback
regulation. The closed-loop circuit showed no change in
fluorescence, while the open-loop circuit showed a 50%
decrease [34].

Like negative feedback, positive feedback architectures
have been observed in a range of natural systems [57],
and are now being included in synthetic biological designs
[58]. In their most fundamental implementations, synthetic
positive feedback loops have been used to amplify biological
circuits’ responses to inducers [59], and when nested with
negative feedback circuits can provide robustness and
tunability for circuits such as genetic oscillators [60].
Positive feedback is also of use in the creation of bi-stable
switches, as it encourages fast and permanent transition
between switch states [61]. Feed-forward loops, which can
be created by combining positive and negative feedback
[62], are well studied in natural processes [63], and provide
topologies capable of perfect adaptation [64], [65] and
fold-change detection [66], [67].

Beyond biological contexts, a variety of feedback
controllers that interface with synthetic biological systems
have been implemented in silico. Based on measurements
of a cell colony’s behaviour (for example, by measuring the
fluorescence output of a synthetic circuit) such algorithms
can estimate the control signal necessary to attain a desired
outcome. Cells can then be manipulated to achieve this via
a range of methods, such as input of inducer molecules
[68], [69], or actuation using light-sensitive proteins [70].
These methods have been further developed in combination
with automated experimental procedures that maintain cells
in their exponential growth phase, providing hardware
setups that can simultaneously regulate both cell growth
and gene expression [71]. Setups which regulate cell
growth in this manner can minimise many of the major
sources of variability in synthetic biology, since cells
can be maintained in their exponential growth phase in a
nutrient-rich environment.

III. ADAPTATION OF OTHER CONTROL CONCEPTS

In addition to the implementation of feedback and
other regulatory architectures, recently progress has been
made toward the adaptation of other core concepts from
control engineering in synthetic biological contexts. For
example, a molecular implementation of a least-mean-
squares estimator has been described [72], as have filtering
architectures for state estimation, system identification, and
noise cancellation [73]. Simple components from electrical
circuits have also been under continual development, such
as tunable amplification circuits [74].

The ability to make decisions that depend on multiple
continuous or binary (on or off) inputs is another impor-
tant control capability that has been recently developed in
synthetic biological contexts [75]. Simple decision making
circuits (such as AND gates) were initially designed and
built using transcription factor networks [76], [77]. However,
many such devices are functional only within a limited
parameter range, and maintaining memory of a decision (e.g.
one state of a bistable switch) can be challenging (though
more complex designs that include positive feedback have
improved upon these properties [61]). Recently, integrase-
based decision circuits (which overcome some of these
challenges) have received greater study [78]. Combinations
of orthogonal integrases have been used to build many two-
and three-input logic functions [29], which use transcription
factors to process inputs, and integrases (expressed under
their control) to re-arrange DNA cassettes. Integrase-based
decision making circuits have the added benefit (compared
to transcription factor-based decision making) of providing
a reliable lasting record of past decisions; their outcome
results in permanent changes to DNA that can be maintained
for many (> 90) cell generations [79]. The permanence of
integrase flipping also lends these systems to use in the
design of circuits that record the order and relative timing of
inputs [80], [81].

IV. DESIGN AND IMPLEMENTATION OF BIOLOGICAL
CONTROL SYSTEMS

A range of methods have been proposed to aid the
design of synthetic biological networks that achieve specific
control goals [82], [83]. The first challenge in this process
is the definition of an appropriate network topology,
which can be approached via traditional control-theoretical
methods whilst considering some biological limitations
on component interactions [31]. Constraints that must be
satisfied for systems to achieve adaptation [26], disturbance
rejection [30], or switch-like responses [84] have been
explored, as have state-space approaches to finding design
constraints of both linear [85] and non-linear [86] systems.
Though these approaches can be used to find networks
that are in some way minimal (for example, requiring
the fewest reactions to realise), this does not guarantee
that their implementation will be feasible, or that they
will perform robustly. Particular parameter value regimes
can be selected during the design phase such that these
constraints are satisfied (though these must then be achieved
in implementation), using methods that parallel those
commonly used in control and electrical engineering. For
example, mathematical treatments of biological oscillators
(such as the repressilator [4]) can guide parameter selection
to meet specific frequency or amplitude goals [43], [87].
Synthetic biological systems that combine processes
operating on widely varying timescales provide a range of
benefits [88], including reducing the challenge presented
by realisation of specific network structures in order to
guarantee certain control behaviours. For example, systems
that use a layer of fast-acting control components to regulate
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a layer of slower processes shift design challenges away
from definition of precise network structures, instead relying
on selection and tuning of parameter values in the fast layer
[23].

The tuning of feedback systems via adjustment of
their individual parameters and components is an ongoing
challenge in synthetic biology. As is known from control
engineering, certain fundamental constraints limit achievable
controller performance (for example, the waterbed effect
has been observed in yeast [89]). Parameter tuning is often
achieved by selecting Ribosome Binding Sites (RBSs) or
promoters (which regulate translation and transcription
respectively) of appropriate strengths [90], [91], though
their behaviour can vary substantially depending on other
cellular processes with which they interact [92]. Critical
in this balance is cell burden, which is broadly used to
describe the consumption of available cellular resources by
synthetic circuits. Thus, if a synthetic (or natural) circuit
is creating its components or products at a very high
rate, the overall pool of free cellular resources (such as
ribosomes and charged tRNAs) can be substantially reduced
[93]. Cell burden may impact other cellular processes in a
difficult-to-predict manner, potentially decreasing the rate at
which certain proteins are produced [94] and reducing cell
growth rate [95]. This can introduce secondary “virtual”
network connections between elements of a synthetic circuit
that are not designed to directly interact [96]. In many
cases similar secondary effects and relationships can be
responsible for context-dependence and unforeseen circuit
behaviours [97], though recently a number of approaches
have been developed via which they may be overcome. One
such approach is the utilisation of orthogonal transcription
and translation machinery [98], which because they are
only used by the introduced synthetic systems, are not
substantially disturbed by a cell’s natural behavioural
variations. However, such approaches do not address the
more extreme host-circuit interactions, such as the potential
for strong expression of synthetic genes to lead to retardation
of their host’s growth [99].

Another approach to overcoming the cellular burden of
synthetic biological systems is to build circuits that function
at low component abundances, or build upon native cellular
machinery to reduce the number of additional genes that
must be expressed [56]. Recent work has demonstrated that
natural systems can be built upon and re-purposed in this
way by as little as the addition of a single appropriately
acting protein. For example, inclusion of a new interaction
in a phosphorylation cycle can re-purpose a system with a
robust step-response to provide a user-defined output level,
or even near-perfect adaptation [100] (an example of such
a system is described in Figure 4). This approach is doubly
beneficial; the introduced cell burden is small (since only
a single additional protein is expressed), and due to its
simplicity, experimental realisation of such a control system
can be relatively straightforward. When considering the

Fig. 4: Re-designing of the Taz-OmpR system [101] with
addition of a single Phosphatase enzyme (Tazc). a) The
original system, in which the protein Taz receives a step-
input via external stimulus, and encourages the reversible
phosphorylation of OmpR to form OmpRp. OmpRp then
binds to the ompC promoter (PompC), increasing the pro-
duction rate of cfp (Cyan Fluorescent Protein). The system
thus produces a step response fluorescence output. b) Ad-
dition of Tazc can shift the step response magnitude by
de-phosphorylating OmpRp, with the output level of cfp
dependent upon Tazc concentration. c) Placing the gene for
Tazc downstream of PompC forms a feedback loop, where
high OmpRp levels increase production of Tazc, thereby de-
phosphorylating OmpRp to form OmpR. By closing the loop
the system can exhibit a near-adaptive response to a step
input. Figure adapted with permission from [100].

burden imposed upon a cell by synthetic control systems,
DNA-based systems are similarly attractive, since they do
not rely on resource-intensive protein production, whilst
being able to perform the information processing necessary
for effective control [95].

In addition to burdening their host cells, synthetic
biological systems can substantially influence the up-
and down-stream processes with which they interface in
undesirable ways. For example, down-stream elements in a
biological circuit can apply a “load” to connected upstream
components by consuming (or temporarily sequestering)
them [102]. This makes the utilisation of timing circuits
(such as oscillators) to control other processes challenging,
since any connections (i.e. secondary processes that interact
with the components of the oscillatory circuit) will disrupt
the timing circuit’s own dynamics, affecting its period and
amplitude, or potentially breaking it altogether. This effect
is well studied in electrical engineering, where designs
must include parts that “insulate” up-stream components
from those with which they interface, and this has inspired
study of similar situations in biological contexts [103]. To
address this effect biological load-drivers (inspired by those
in control and electrical engineering) have been developed,
which use fast-acting phosphotransfer processes to provide
an insulating buffer between slower components, almost
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eliminating previously potent loading effects [35]. Similar
architectures can be used to implement amplifier-like circuits
[104], which will likely find extensive use as synthetic
biological circuits grow in size and diversity of constituent
components.

For many biological processes, robustness (that is, a
system’s insensitivity to fluctuations in its components’
performance and surrounding conditions) can be critical for
reliable function [105]. Systems that are designed without
consideration of how variation in their individual parameters
will impact their performance are thus at the mercy of noisy
biochemical processes, which can perturb or completely
disrupt their desired behaviour [11]. Though for many
synthetic constructs the regulation of noise is desirable
for this reason [106], some natural systems benefit from
its presence [107], [108], [109]. For example, variability
between cells can provide an evolutionary advantage in
changing environments [110]. Synthetic systems have been
developed which similarly benefit from the stochasticity
of gene expression [56], and it is often necessary to
include noise in their mathematical treatment to reproduce
fundamental aspects of their behaviour [111].

V. FUTURE DIRECTIONS

A. Re-considering design of synthetic biological systems

Though much progress has been made toward the real-
ization of control systems in synthetic biological contexts,
a range of significant challenges must be overcome before
they can find widespread practical implementation. Let us
consider a biological circuit modelled by a system of non-
linear ordinary differential equations of the form:

ẋ = f(x,u,p) (1)

where x is a vector of system state variables (for example,
protein or sRNA concentrations), ẋ is its time derivative, u is
a vector of inputs to the system (for example, concentrations
of inducer molecules), and p is a vector of parameters that
enter the non-linear equations, f . The first challenge in
designing a system of this form is defining the structure of
f such that the state variables x achieve a desirable steady
state and dynamic behaviour. Future work will likely focus
on approaching this problem in a fundamentally biological
context, such that network topologies and implementations
selected are biologically tractable, rather than by adapting
or building upon methods previously developed in electrical
and control engineering for which this consideration is not
relevant. In some cases differential equation models such as
this may be inappropriate, particularly when systems work at
the single-molecule level, necessitating stochastic modelling.

The second major challenge is realising the desired
structure of f via the selection and tuning of reliable
components and parts, thereby defining the parameters p.
As discussed in Section IV this process must consider a
range of secondary effects and interdependencies that arise

in complex biological systems, as well as the fundamental
limitations of their performance. Finally, with design
frameworks and appropriate components in hand, synthetic
biologists and control theorists will be able to implement
control systems as part of larger synthetic constructs, going
beyond previous work which has predominantly focused on
the demonstration of control systems in isolation.

Due to the inherent noisiness of biological systems
it is crucial that variability in the performance of their
individual components is considered throughout the
design process. As discussed in Section IV, many natural
systems have highly robust architectures which allow
them to function in variable environments and cellular
states [11]. Though some synthetic designs have built
upon and repurposed robust natural systems [100], the
development of design methodologies that treat parameters
as probability distributions, thereby allowing for substantial
uncertainty in their values, has only recently begun
[112]. Approaching design in such a way can aid in the
tuning process of synthetic circuits, as adjustments can
be made with the intention of shifting/shaping probability
distributions (rather than just attempting to alter mean
measured parameter values), maximising the potential that
once implemented a system’s behaviour will fall within
acceptable limits. By carrying the uncertainty though the
design and tuning process, such approaches may also
reveal network topologies which are particularly robust,
but may be currently overlooked due to their apparent
complexity (e.g. number of components/reactions required
for implementation).

As prior efforts in synthetic biology have revealed, many
designs which may on paper appear uncomplicated can
be difficult or even impossible to implement with current
state-of-the-art biological components and experimental
procedures. Selecting the most promising designs from
a range of potential theoretical candidates thus requires
extensive experimental expertise, as a combination of the
practical behaviour of the components selected, as well as
experimental procedures that might be followed to assemble
them into a working system, must be considered. Past
approaches have addressed this via modularity of parts and
experimental procedures [29], but have been restricted to
systems with limited sets of capabilities. There is therefore a
great need for design procedures and theoretical treatments
of biological systems which consider and quantify potential
circuits in terms of “ease of implementation”. Defining
such a metric with any kind of reliability or standardisation
would pose a significant challenge, particularly in terms of
quantising the difficulty in using various combinations of
parts and experimental procedures. Furthermore, it would
require regular re-standardisation as the range of biological
components and experimental procedures from which to
choose grows.
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B. New approaches to implementation

Study of biological processes and systems across a variety
of organisms has yielded a diverse (and growing) selection
of genetic parts that can be utilised in synthetic biological
designs [113]. However, at present synthetic constructs
still frequently rely on transcriptional regulatory networks,
which though relatively easy to design and implement, are
slow-acting and resource-intensive [88]. In natural systems
such networks are typically used for long-term cellular
decision making, whilst faster control-related functionalities
are enacted by protein-based interactions (such as the
phosphorylation cycles discussed in Section IV) [88]. To
produce similarly capable control networks in synthetic
biological contexts it will likely be necessary to utilise
approaches that rely on RNA-based mechanisms [114], or
protein engineering, as has been done in some simple cases
discussed previously [35]. Until now novel functionalities
have been achieved by adapting or modifying naturally
occurring proteins, however, recently much progress has
been made in the rational design of functional proteins
[113]. There is thus substantial room for development of
biological circuits that utilise synthetic proteins, and future
design philosophies will need to account for these rapidly
expanding capabilities and their potential applications.

As the diversity of components with which synthetic
biological systems can be built has grown, so too has the
range of cellular chassis, or entirely cell-free systems, in
which they can be implemented. At the most fundamental
level are cell-free systems, which provide a minimal
media containing pre-determined quantities of the cellular
machinery necessary for protein expression (such as
Ribosomes, nucleotides, and amino-acids) [115]. Such
systems eliminate many background cellular processes
whose interference with synthetic systems introduces noise,
and they provide a relatively predictable breakdown of
cellular chemicals and components. A range of attempts
have been made to achieve expression environments of
intermediary complexity (for example, SimCells [116]),
which often involve removal of non-essential functions
from a standard bacterial host [117]. By simplifying
the environment in which synthetic biological systems
are expressed each of these approaches allows more
reliable prediction of their behaviour. Mathematical models
and control theoretical treatment are thus more reliably
applicable, and may be expanded with greater confidence to
account for the interplay between synthetic systems and the
surrounding cellular machinery.

C. Automation and experimental standardisation

As synthetic biologists have attempted to replicate
experimental studies from the literature in their own
laboratories it has become clear that due to the context-
dependence of many synthetic circuits slight variations in
experimental procedures and conditions can result in widely
varying results. This has encouraged the standardisation

and automation of experimental procedures via use of
robotic platforms, which can reliably perform many of the
tedious laboratory tasks that were previously completed
manually by scientists and technicians. Moving a step
further are companies such as Transcriptic [118], which
offer remote automation of experimental procedures from
start to finish: Scientists provide a DNA sequence or plasmid
(for which synthesis methods have progressed rapidly in
both capability and reliability in recent years [119]), and
then computationally design a series of experiments and
measurements. These can make use of standardised cell lines
and reagents, and an ever growing selection of hardware,
and are performed in the company’s largely automated
laboratories. A range of software tools have been developed
to speed the design and implementation of such experiments,
substantially reducing the knowledge-barrier to entry [120].
Automated approaches mean scientists do not need access
to their own laboratory, thereby lowering the resource and
experimental expertise requirements for participation in
synthetic biological research.

As synthetic biological procedures and design tasks
become more automated, there is an increasing need for
machine learning approaches to be included in experimental
workflows to maximise the amount that can be learnt
from both successes and failures [121]. Past studies have
utilised a diversity of machine learning tools for purposes
including the identification of sRNA and ncRNA (non
coding RNA) genes [122], [123], and companies with
access to automated facilities employ such techniques
to analyse the large data sets produced by biological
experiments [124]. As the synthetic biological design cycle
becomes increasingly automated and data-driven there will
be a range of opportunities for application of novel machine
learning techniques [125], which may even be implemented
by biological systems [126].

VI. CONCLUSION

The application of control theoretical thinking to synthetic
biology has resulted in a range of landmark results over
the past two decades. Many components that approximate
those used in electrical and control engineering have been
implemented in biological contexts, and have on occasion
been utilised as part of larger circuits that tackle real-world
problems. However, in the future control designs will
likely need to move toward more advanced and robust
feedback architectures, and do so by effectively using the
growing diversity of biological components available for
their implementation. Until now biological control systems
have frequently been studied and implemented in isolation,
often using inducer molecules as input and fluorescent
reporters as output, which has not fully accounted for many
of the context-dependent effects known to strongly impact
synthetic systems. Moving forward, control architectures
will thus need to be designed and integrated as part of
larger synthetic biological constructs, which may then be
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used to address a diversity of problems in fields ranging
from industrial chemical synthesis to healthcare.
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[16] D. Muzzey, C. A. Gómez-Uribe, J. T. Mettetal, and A. van Oude-
naarden, “A Systems-Level Analysis of Perfect Adaptation in Yeast
Osmoregulation,” Cell, vol. 138, no. 1, pp. 160–171, 2009.

[17] H. C. Berg and D. A. Brown, “Chemotaxis in Escherichia coli
analysed by three-dimensional tracking.” Nature, vol. 239, no. 5374,
pp. 500–504, 1972.

[18] T. M. Yi, Y. Huang, M. I. Simon, and J. Doyle, “Robust perfect
adaptation in bacterial chemotaxis through integral feedback control.”
PNAS, vol. 97, no. 9, pp. 4649–53, 2000.

[19] S. Chen, P. Harrigan, B. Heineike, J. Stewart-Ornstein, and H. El-
Samad, “Building robust functionality in synthetic circuits using
engineered feedback regulation,” Current Opinion in Biotechnology,
vol. 24, no. 4, pp. 790–796, 2013.

[20] P. P. Peralta-Yahya, F. Zhang, S. B. del Cardayre, and J. D. Keasling,
“Microbial engineering for the production of advanced biofuels,”
Nature, vol. 488, no. 7411, pp. 320–328, 2012.

[21] J. Chappell, M. K. Takahashi, and J. B. Lucks, “Creating small
transcription activating RNAs,” Nature Chemical Biology, vol. 11,
no. February, pp. 1–9, 2015.

[22] B. Yordanov, J. Kim, R. L. Petersen, A. Shudy, V. V. Kulkarni, and
A. Phillips, “Computational design of nucleic acid feedback control
circuits,” ACS Synthetic Biology, vol. 3, no. 8, pp. 600–616, 2014.

[23] T. P. Prescott and A. Papachristodoulou, “Designing Conserva-
tion Relations in Layered Synthetic Biomolecular Networks,” IEEE
Transactions on Biomedical Circuits and Systems, vol. 9, no. 4, pp.
572–580, 2015.

[24] P. Rivera-Ortiz and D. Del Vecchio, “Integral action with time scale
separation: A mechanism for modularity in biological systems,”
Proceedings of the IEEE Conference on Decision and Control, pp.
49–55, 2015.

[25] C. Briat, C. Zechner, and M. Khammash, “Design of a Synthetic
Integral Feedback Circuit: Dynamic Analysis and DNA Implemen-
tation,” ACS Synthetic Biology, vol. 5, no. 10, pp. 1108–1116, 2016.

[26] J. Ang and D. R. McMillen, “Physical constraints on biological
integral control design for homeostasis and sensory adaptation,”
Biophysical Journal, vol. 104, no. 2, pp. 505–515, 2013.

[27] A. W. K. Harris, J. A. Dolan, C. L. Kelly, J. Anderson, and
A. Papachristodoulou, “Designing Genetic Feedback Controllers,”
IEEE Transactions on Biomedical Circuits and Systems, vol. 9, no. 4,
pp. 475–484, 2015.

[28] B. Canton, A. Labno, and D. Endy, “Refinement and standardization
of synthetic biological parts and devices,” Nature Biotechnology,
vol. 26, no. 7, pp. 787–793, 2008.

[29] A. A. K. Nielsen, B. S. Der, J. Shin, P. Vaidyanathan, V. Paralanov,
E. A. Strychalski, D. Ross, D. Densmore, and C. A. Voigt, “Genetic
circuit design automation.” Science, vol. 352, no. 6281, p. aac7341,
2016.

[30] T. Drengstig, I. W. Jolma, X. Y. Ni, K. Thorsen, X. M. Xu, and
P. Ruoff, “A basic set of homeostatic controller motifs,” Biophysical
Journal, vol. 103, no. 9, pp. 2000–2010, 2012.

[31] H. Steel and A. Papachristodoulou, “Constraints for Biological Sys-
tems that Achieve Adaptation and Disturbance Rejection,” Submitted
paper, 2017.

[32] R. Daniel, J. R. Rubens, R. Sarpeshkar, and T. K. Lu, “Synthetic
analog computation in living cells,” Nature, vol. 497, no. 7451, pp.
619–623, 2013.

[33] K. Oishi and E. Klavins, “Biomolecular implementation of linear I/O
systems,” IET Systems Biology, vol. 5, no. 4, pp. 252–260, 2011.

[34] G. Lillacci, S. Aoki, D. Schweingruber, and M. Khammash, “A
synthetic integral feedback controller for robust tunable regulation
in bacteria,” bioRxiv, pp. 1–7, 2017.

[35] D. Mishra, P. M. Rivera, A. Lin, D. Del Vecchio, and R. Weiss, “A
load driver device for engineering modularity in biological networks,”
Nature Biotechnology, vol. 32, no. 12, pp. 1268–1275, 2014.

[36] H. Steel, A. W. K. Harris, E. J. Hancock, C. L. Kelly, and A. Pa-
pachristodoulou, “Frequency domain analysis of small non-coding
RNAs shows summing junction-like behaviour,” Proceedings of the
56th IEEE Conference on Decision and Control., 2017.

[37] R. M. Murray and D. Del Vecchio, “Biomolecular Feedback Sys-
tems,” Bernoulli, 2010.

[38] F. Zhang, J. M. Carothers, and J. D. Keasling, “Design of a dynamic
sensor-regulator system for production of chemicals and fuels derived
from fatty acids.” Nature biotechnology, vol. 30, no. 4, pp. 354–9,
2012.

[39] F. He, E. Murabito, and H. V. Westerhoff, “Synthetic biology and
regulatory networks: where metabolic systems biology meets control
engineering,” Journal of the Royal Society, Interface, vol. 13, p.
20151046, 2016.

[40] J.-C. Lin and D. Thirumalai, “Gene regulation by riboswitches with
and without negative feedback loop.” Biophysical Journal, vol. 103,
no. 11, pp. 2320–30, 2012.

[41] G. Fiore, A. Matyjaszkiewicz, F. Annunziata, C. Grierson, N. J.
Savery, L. Marucci, and M. Di Bernardo, “In-Silico Analysis and
Implementation of a Multicellular Feedback Control Strategy in a
Synthetic Bacterial Consortium,” ACS Synthetic Biology, vol. 6, no. 3,
pp. 507–517, 2017.

[42] M. O. Din, T. Danino, A. Prindle, M. Skalak, J. Selimkhanov,
K. Allen, E. Julio, E. Atolia, L. S. Tsimring, S. N. Bhatia, and
J. Hasty, “Synchronized cycles of bacterial lysis for in vivo delivery.”
Nature, vol. 536, no. 7614, pp. 81–85, 2016.

[43] L. Potvin-Trottier, N. D. Lord, G. Vinnicombe, and J. Paulsson,
“Synchronous long-term oscillations in a synthetic gene circuit,”
Nature, vol. 538, no. 7626, pp. 514–517, 2016.

[44] S. Gottesman and G. Storz, “Bacterial small RNA regulators: Ver-
satile roles and rapidly evolving variations,” Cold Spring Harbor
Perspectives in Biology, vol. 3, no. 12, pp. 1–16, 2011.

1021



[45] D. Na, S. M. Yoo, H. Chung, H. Park, J. H. Park, and S. Y. Lee,
“Metabolic engineering of Escherichia coli using synthetic small
regulatory RNAs.” Nature biotechnology, vol. 31, no. 2, pp. 170–
4, 2013.

[46] E. Franco, G. Giordano, P. O. Forsberg, and R. M. Murray, “Negative
autoregulation matches production and demand in synthetic transcrip-
tional networks,” ACS Synthetic Biology, vol. 3, no. 8, pp. 589–599,
2014.

[47] A. N. Leistra, P. Amador, A. Buvanendiran, A. Moon-Walker, and
L. M. Contreras, “Rational Modular RNA Engineering Based on In
Vivo Profiling of Structural Accessibility,” ACS Synthetic Biology, p.
acssynbio.7b00185, 2017.

[48] A. A. Green, P. A. Silver, J. J. Collins, and P. Yin, “Toehold switches:
De-novo-designed regulators of gene expression,” Cell, vol. 159,
no. 4, pp. 925–939, 2014.

[49] D. Soloveichik, G. Seelig, and E. Winfree, “DNA as a universal
substrate for chemical kinetics,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 5347 LNCS, no. 12, pp. 57–69,
2009.

[50] D. Y. Zhang and G. Seelig, “Dynamic DNA nanotechnology using
strand-displacement reactions.” Nature chemistry, vol. 3, no. 2, pp.
103–113, 2011.

[51] T. Song, S. Garg, R. Mokhtar, H. Bui, and J. Reif, “Analog Computa-
tion by DNA Strand Displacement Circuits,” ACS Synthetic Biology,
p. acssynbio.6b00144, 2016.

[52] D. Y. Zhang, “Towards Domain-Based Sequence Design for DNA
Strand Displacement Reactions,” in Internatonal Workshop on DNA-
Based Computers. Springer Berlin Heidelberg, 2010, pp. 162–175.

[53] T. Folliard, H. Steel, T. P. Prescott, G. Wadhams, L. J. Rothschild,
and A. Papachristodoulou, “A synthetic recombinase-based feedback
loop results in robust expression,” ACS Synthetic Biology, 2017.

[54] N. D. Grindley, K. L. Whiteson, and P. A. Rice, “Mechanisms of Site-
Specific Recombination,” Annu. Rev. Biochem., vol. 75, pp. 567–605,
2006.

[55] P. S. Swain, M. B. Elowitz, and E. D. Siggia, “Intrinsic and extrinsic
contributions to stochasticity in gene expression.” Proceedings of
the National Academy of Sciences of the United States of America,
vol. 99, no. 20, pp. 12 795–800, 2002.

[56] C. Briat, A. Gupta, and M. Khammash, “Antithetic Integral Feed-
back Ensures Robust Perfect Adaptation in Noisy Biomolecular
Networks,” Cell Systems, vol. 2, no. 1, pp. 15–26, 2016.

[57] J. L. Radzikowski, S. Vedelaar, D. Siegel, Á. D. Ortega, A. Schmidt,
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[94] A. Gyorgy, J. I. Jiménez, J. Yazbek, H. H. Huang, H. Chung,
R. Weiss, and D. Del Vecchio, “Isocost Lines Describe the Cellular
Economy of Genetic Circuits,” Biophysical Journal, vol. 109, no. 3,
pp. 639–646, 2015.

[95] N. Roquet and T. K. Lu, “Digital and analog gene circuits for
biotechnology,” pp. 597–608, 2014.

[96] Y. Qian and D. Del Vecchio, “Mitigation of ribosome competition
through distributed sRNA feedback,” Proc. of IEEE Conference on
Decision and Control, pp. 1–30, 2016.

[97] S. Cardinale and A. P. Arkin, “Contextualizing context for synthetic
biology - identifying causes of failure of synthetic biological sys-
tems,” Biotechnology Journal, vol. 7, no. 7, pp. 856–866, 2012.

[98] W. An and J. W. Chin, “Synthesis of orthogonal transcription-
translation networks.” Proceedings of the National Academy of
Sciences of the United States of America, vol. 106, no. 21, pp. 8477–
82, 2009.

[99] C. Tan, P. Marguet, and L. You, “Emergent bistability by a growth-
modulating positive feedback circuit,” Nature Chemical Biology,
vol. 5, no. 11, pp. 842–848, 2009.

[100] Y. C. Chang, J. P. Armitage, A. Papachristodoulou, and G. H.
Wadhams, “A single phosphatase can convert a robust step response
into a graded, tunable or adaptive response,” Microbiology (United
Kingdom), vol. 159, no. PART7, pp. 1276–1285, 2013.

[101] S. A. Forst and D. L. Roberts, “Signal transduction by the EnvZ-
OmpR phosphotransfer system in bacteria,” Research in Microbiol-
ogy, vol. 145, no. 5-6, pp. 363–373, 1994.

[102] A. Gyorgy and D. Del Vecchio, “Modular Composition of Gene
Transcription Networks,” PLoS Computational Biology, vol. 10,
no. 3, 2014.

[103] D. Del Vecchio, A. J. Ninfa, and E. D. Sontag, “Modular cell biology:
retroactivity and insulation,” Molecular systems biology, vol. 4, no.
161, 2008.

[104] K. S. Nilgiriwala, J. Jimenez, P. M. Rivera, and D. Del Vecchio,
“Synthetic Tunable Amplifying Buff er Circuit in E. coli,” ACS
Synthetic Biology, vol. 4, pp. 577–584, 2015.

[105] H. Kitano, “Biological robustness,” Nature Reviews Genetics, vol. 5,
no. November, pp. 826–837, 2004.

[106] Y. Dublanche, K. Michalodimitrakis, N. Kummerer, M. Foglierini,
and L. Serrano, “Noise in transcription negative feedback loops:
simulation and experimental analysis,” Mol Syst Biol, vol. 2, p. 41,
2006.

[107] M. Elowitz, A. Levine, E. Siggia, and P. Swain, “Stochastic gene
expression in a single cell,” Science, vol. 297, no. 5584, pp. 1183–6,
2002.

[108] L. T. Macneil and A. J. M. Walhout, “Gene regulatory networks
and the role of robustness and stochasticity in the control of gene
expression,” Genome Research, pp. 645–657, 2011.

[109] G. Rodrigo and J. F. Poyatos, “Genetic Redundancies Enhance Infor-
mation Transfer in Noisy Regulatory Circuits,” PLoS Computational
Biology, vol. 12, no. 10, pp. 1–20, 2016.

[110] G. Balazsi, A. Van Oudenaarden, and J. J. Collins, “Cellular decision
making and biological noise: From microbes to mammals,” Cell, vol.
144, no. 6, pp. 910–925, 2011.

[111] T. Tian and K. Burrage, “Stochastic models for regulatory networks
of the genetic toggle switch.” Proceedings of the National Academy
of Sciences of the United States of America, vol. 103, no. 22, pp.
8372–8377, 2006.

[112] J. Ruess, H. Koeppl, and C. Zechner, “Sensitivity estimation for
stochastic models of biochemical reaction networks in the presence
of extrinsic variability,” The Journal of Chemical Physics, vol. 146,
no. 12, p. 124122, 2017.

[113] R. W. Bradley, M. Buck, and B. Wang, “Tools and Principles for
Microbial Gene Circuit Engineering,” Journal of Molecular Biology,
vol. 428, no. 5, pp. 862–888, 2016.

[114] T. Folliard, B. Mertins, H. Steel, T. Prescott, T. Newport, C. Jones,
G. Wadhams, T. Bayer, J. Armitage, A. Papachristodoulou, and
L. Rothschild, “Ribo-attenuators: novel elements for reliable and
modular riboswitch engineering,” Scientific Reports, 2017.

[115] C. E. Hodgman and M. C. Jewett, “Cell-free synthetic biology :
Thinking outside the cell,” Metabolic Engineering, vol. 14, no. 3,
pp. 261–269, 2012.

[116] C. P. N. Rampley, P. A. Davison, P. Qian, G. M. Preston, C. N.
Hunter, I. P. Thompson, L. J. Wu, and W. E. Huang, “Development
of SimCells as a novel chassis for functional biosensors,” Scientific
Reports, vol. 7, no. 1, p. 7261, 2017.

[117] C. A. Hutchison III, R.-y. Chuang, V. N. Noskov, N. Assad-garcia,
T. J. Deerinck, M. H. Ellisman, J. Gill, K. Kannan, B. J. Karas,
L. Ma, J. F. Pelletier, Z.-q. Qi, R. A. Richter, E. A. Strychalski,
L. Sun, Y. Suzuki, B. Tsvetanova, K. S. Wise, H. O. Smith, J. I.
Glass, C. Merryman, D. G. Gibson, and J. C. Venter, “Design and
synthesis of a minimal bacterial genome,” Science, vol. 351, no. 6280,
2016.

[118] Transcriptic, “Your Lab In The Cloud,” 2017. [Online]. Available:
https://www.transcriptic.com/

[119] R. A. Hughes and A. D. Ellington, “Synthetic DNA Synthesis and
Assembly : Putting the Synthetic in Synthetic Biology,” Cold Spring
Harbor Perspectives in Biology, vol. 9, 2017.

[120] M. Bates, A. J. Berliner, P. R. Jaschke, and E. S. Groban, “Wet Lab
Accelerator: A Web-Based Application Democratizing Laboratory
Automation for Synthetic Biology,” ACS Synthetic Biology, 2017.

[121] J. Nielsen and J. D. Keasling, “Engineering Cellular Metabolism,”
Cell, vol. 164, no. 6, pp. 1185–1197, 2016.

[122] R. K. Barman, A. Mukhopadhyay, and S. Das, “An improved method
for identification of small non-coding RNAs in bacteria using support
vector machine,” Scientific reports, vol. 7, 2017.

[123] Q. Abbas, S. M. Raza, A. A. Biyabani, and M. A. Jaffar, “A Review
of Computational Methods for Finding Non-Coding RNA Genes,”
Genes, vol. 7, no. 113, 2016.

[124] M. Bomgardner and E. N. W. Coast, “Start-ups with robots seek to
scale up synthetic biology,” vol. Chemical &, pp. 18–22, 2016.

[125] J. Mellor, I. Grigoras, P. Carbonell, and J.-L. Faulon, “Semi-
supervised Gaussian Process for Automated Enzyme Search,” ACS
Synthetic Biology, p. acssynbio.5b00294, 2016.

[126] M. R. Lakin and D. Stefanovic, “Supervised Learning in Adaptive
DNA Strand Displacement Networks,” ACS Synthetic Biology, vol. 5,
pp. 885–897, 2016.

1023


