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a b s t r a c t 

Combating the evolution of widespread antibiotic resistance is one of the most pressing challenges facing 

modern medicine. Recent research has demonstrated that the evolution of pathogens with high levels of 

resistance can be accelerated by spatial and temporal inhomogeneities in antibiotic concentration, which 

frequently arise in patients and the environment. Strategies to predict and counteract the effects of such 

inhomogeneities will be critical in the fight against resistance. In this paper we develop a mechanistic 

framework for modelling the adaptive evolution of resistance in the presence of spatiotemporal antibiotic 

concentrations, which treats the adaptive process as an interaction between two mutually orthogonal 

forces; the first returns cells to their wild-type state in the absence of antibiotic selection, and the second 

selects for increased coping ability in the presence of an antibiotic. We apply our model to investigate 

laboratory adaptation experiments, and then extend it to consider the case in which multiple strategies 

for resistance undergo competitive evolution. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Combatting the evolution of antibiotic resistant pathogens is

ne of the major clinical challenges faced by modern medicine

 Ling et al., 2015; Durão et al., 2018; Baym et al., 2016b ). Given

ufficient time, resistance to virtually all antibiotic compounds can

volve ( Bell and MacLean, 2018 ), and because resistant strains tend

o adapt themselves to their new conditions ( MacLean et al., 2010;

ndersson, 2006 ) the return to sensitivity (in the absence of an

ntibiotic) occurs very slowly ( Durão et al., 2018; Schrag et al.,

997; De Gelder et al., 2004 ). Consequently there is a pressing

eed for new approaches to predicting and preventing the spread

f resistance, and its evolution in the first place ( Gifford et al.,

018; Furusawa et al., 2018 ). This will require novel theoretical

escriptions of the development of resistance ( Bell and MacLean,

018; Luka ̌cišinová and Bollenbach, 2017 ) which take into account

 range of environmental and physical factors that regulate the

rocess. If these techniques can be employed to sufficiently slow

own the development of resistance, its spread may eventually be

topped entirely ( Bell and MacLean, 2018 ). 

Cell-Antibiotic interactions vary greatly depending on the par-

icular species involved: Antibiotics may target a broad range of

ellular processes and systems, and can have widely varying ef-
∗ Corresponding author. 
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ects on different cell lines or species. These antibiotic effects can

e broadly classified as bactericidal (killing of bacteria) or bacterio-

tatic (preventing of growth) ( Kohanski et al., 2010 ). Antibiotic ef-

ects are typically quantified using metrics such as the MBC (mini-

um bactericidal concentration) or MIC (minimum inhibitory con-

entration) which represent concentrations required to almost en-

irely eliminate a bacterial population ( Liu et al., 2004; Wang et al.,

016 ). However, these metrics can be difficult to apply (particu-

arly in clinical settings) due to the wide range of responses cells

ay have to high antibiotic concentrations. For example, cells can

xhibit tolerant (reduced or stalled growth which allows antibi-

tics that require active growth for killing to be resisted) or per-

ister (non-growing clonal sub-populations) behaviours which al-

ow populations to recover following prolonged antibiotic exposure

 Brauner et al., 2016; Harms et al., 2016; Cohen et al., 2013 ). 

At the biochemical level antibiotic resistance can be achieved

y a range of mechanisms, depending on the environmental con-

itions and antibiotic in question ( Palmer et al., 2018; Pál et al.,

015 ). These can be broadly classified into four mechanistic cate-

ories: The modification of cellular targets so that antibiotic bind-

ng is diminished, physical removal of an antibiotic from the cell

ia modification of efflux systems, reduction of cellular uptake, and

nzymatic inactivation of the antibiotic ( Pál et al., 2015 ). When

ne of these forms of resistance develops via a series of mutations

here are, in many cases, only a limited number of evolutionary

athways that can be taken ( Weinreich et al., 2006; Palmer et al.,

015 ). Evolutionary trajectories have proven to be remarkably

https://doi.org/10.1016/j.jtbi.2019.110077
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
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reproducible ( Weinreich et al., 2006; Chevereau et al., 2015; Dide-

lot et al., 2016 ), and the particular trajectory taken can be influ-

enced by a range of environmental conditions ( Gifford et al., 2018;

Luka ̌cišinová and Bollenbach, 2017; Zampieri et al., 2017 ). Similar

evolutionary outcomes often have very different effects on other

cellular behaviours, such as cross-sensitivity to other antibiotics

( Barbosa et al., 2017 ). 

Recent studies have demonstrated that the acquisition of resis-

tance can be significantly influenced by spatial ( Zhang et al., 2011;

Baym et al., 2016a ) or temporal ( Toprak et al., 2012; Lindsey et al.,

2013; Chevereau et al., 2015; Oz et al., 2014; Zampieri et al., 2017 )

inhomogeneities in antibiotic concentration. Such inhomogeneities

have been shown to arise in both clinical settings (e.g. concentra-

tion differences between organs within a patient), as well as in

external environments (such as rivers and lakes where antibiotic

run-off accumulates) ( Andersson and Hughes, 2014 ). The presence

of intermediate antibiotic concentrations allows pathogens to grad-

ually develop greater levels of resistance, making them more able

to adapt to large antibiotic concentrations that are subsequently

encountered ( Bell and MacLean, 2018 ). During these adaptive pro-

cesses resistance can increase continuously (e.g. when the expres-

sion of many genes is optimised) or in a step-wise manner (e.g.

when a small number of mutational changes are responsible for

determining overall resistance efficacy) ( Toprak et al., 2012; Chev-

ereau et al., 2015; Barrick and Lenski, 2013; Palmer et al., 2018 ).

A particularly extreme case of step-wise resistance improvement

is that due to horizontal transfer of genetic information (such as

plasmids) that encode resistance genes ( Jansen et al., 2013 ). 

A range of mathematical models have been developed to

describe the evolution and proliferation of antibiotic resistance

( Opatowski et al., 2011; Mozhayskiy and Tagkopoulos, 2013 ). Com-

petition and transmission models have proven to be valuable for

modelling the spread of resistance within cellular populations, pa-

tients, or hospital and human populations at large ( Spicknall et al.,

2013; Jacobs et al., 2016 ). At the genetic level models of indi-

vidual base-pair substitutions in DNA can describe adaptive pro-

cesses over short time-scales ( Posada and Crandall, 2001; Hin-

dré et al., 2012 ), and analyse distributions of mutational effects

( MacLean et al., 2010; Gillespie, 1984 ). Studies of mutational land-

scapes have demonstrated that these individual genetic mutations

may combine to determine a particular trait in highly nontriv-

ial ways ( Furusawa et al., 2018; Beerenwinkel et al., 2007; Franke

et al., 2011; Palmer et al., 2015 ). Traditional descriptions of long-

term adaptive evolution have generally considered evolutionary

pathways at a greater level of abstraction, modelling the varia-

tion in quantitative traits as random walk processes ( Lande, 1976;

Hansen, 1997; Beaulieu et al., 2012; Uyeda and Harmon, 2014 ). In

a few cases stochastic models of evolution have been combined

with consideration of spatial inhomogeneities (which models have

shown impact genetic diversity ( Behrman and Kirkpatrick, 2011 )

and the evolution of resistance ( Kepler and Perelson, 1998; De Jong

and Wood, 2018 )) for the case of antibiotic resistance: Hermsen

et al. proposed a staircase model which discretises bacteria in both

space and phenotype, demonstrating that spatial antibiotic vari-

ation can encourage development of resistance ( Hermsen et al.,

2012 ). This was later developed to provide a continuum treat-

ment of space and phenotype ( Hermsen, 2016 ). Greulich et al. pro-

posed a similar model (they are compared in ( Hermsen, 2016 )),

which demonstrated that environmental inhomogeneities can slow

the acquisition of resistance in some cases ( Greulich et al., 2012 ).

Finally, Gralka et al modelled the impact of convection in the

presence of spatial inhomogeneities, examining the trade-off be-

tween antibiotic efficacy and the potential for resistance to arise

( Gralka et al., 2017 ). 

Building upon this past work, in this paper we outline a mathe-

matical framework for describing the evolution of resistance in the
resence of spatiotemporal antibiotic inhomogeneities. We investi-

ate how different aspects of the evolutionary process determine

he rate at which resistance emerges, and demonstrate how our

ramework can be used to analyse the results of past studies and

ommon clinical situations. 

. Methods 

.1. A cell’s coping ability 

To model the evolution of antibiotic resistance we propose a pa-

ameterisation of cell fitness, coping ability ( γ ), which reflects the

bility of a particular antibiotic resistance strategy to permit a cell

o reproduce when stressed by a coping challenge ( γ c ): If a given

ell has γ < γ c (noting that γ c may be location or time dependent)

hen it is unable to reproduce. By parameterising resistance in this

ay we assume that γ is a function of both genetic changes, as

ell as any other heritable phenotypic differences between cells

hat impact their interactions with an antibiotic ( Deris et al., 2013;

rickson et al., 2016 ). Many resistance strategies only arise when

utations are present in certain combinations ( Weinreich et al.,

006 ), which motivates a parameterisation of resistance ( γ ) which

s not reducible to a sum of individual effects (i.e. discrete point

utations), since any such reduction would require assumptions

e made about all potential combinatorial effects of individual mu-

ations. 

The coping challenge ( γ c ) is assumed to be a non-decreasing

unction of local antibiotic concentration, and may be non-linear.

he functional dependence of γ c upon antibiotic concentration is

ikely to differ between antibiotics depending on their mechanism

f action. However, one potential relationship is of the form: 

c = log ([ A ] / [ A ] 50 ) (1)

here [ A ] is antibiotic concentration and [ A ] 50 is the antibiotic

oncentration required to prevent growth of 50% of wild-type cells

often referred to as IC 50 ( Soothill et al., 1992 )). When no antibiotic

s present ( [ A ] = 0 ) we have γc = −∞ , and thus any value of γ is

ufficient for all cells to reproduce. Eq. (1) aligns with the results of

any experimental studies that have demonstrated that the chal-

enge posed by adapting to an increase in antibiotic concentration

s roughly proportional to the fold-change that must be overcome

 Baym et al., 2016a; Pennell et al., 2015; Toprak et al., 2012 ). 

A significant obstacle to formulating a general theory for

daptive evolution is the unknown distribution of fitness effects

 Rokyta et al., 2005 ). For antibiotic resistance this metric is dif-

cult to estimate because the beneficial (antibiotic resisting) ef-

ects of many mutations are outweighed by their fitness cost

 MacLean et al., 2010 ). To side-step this challenge we decompose

he evolutionary process into two orthogonal components. The first

s the antibiotic ( γ c ) dependent reproduction mentioned above.

he second determines the mutational dynamics of γ in the ab-

ence of an antibiotic, and is governed by two processes: 

Random Mutation ( D γ ): Mutational variations in γ are intro-

uced over time as normally distributed increments (as observed

n the distribution of fitness effects for non-optimal traits ( Schenk

t al., 2012; McDonald et al., 2011 )) with zero mean, and thus have

 50% probability of increasing γ (but do not affect the cell’s typ-

cal reproduction rate or longevity). Treatment of γ as a contin-

ous parameter is motivated by the observation that resistance is

etermined by the cumulative effect of many mutations that may

mpact diverse processes ( Luka ̌cišinová and Bollenbach, 2017; Feng

t al., 2016 ), which often leads to a population’s resistance devel-

ping continuously in time ( Toprak et al., 2012 ). 

Mean Reversion ( θ ): Mean reversion (drift in γ toward its

ean wild-type value μ) is driven by the fitness cost that muta-

ions impart upon a host cell when considered in the absence of
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Fig. 1. Probability distributions of coping ability. At point A no antibiotic is 

present ( γc = −∞ ) and the stationary distribution of coping ability ( P ( γ )) within 

a population of cells is Laplacian as predicted by Eq. (2) . At point B antibiotic is 

added such that γc = 0 , immediately following which cells with γ < 0 are unable 

to replicate. At a later point in time/distance C a new stationary distribution has 

been established, no longer Laplacian since selection for resistance is occurring, and 

hence selective reproduction interferes with the stationary distribution predicted by 

Eq. (2) . Note that at point C some (small number of) cells have γ < γ c due to on- 

going mutation, and the population’s mean γ is substantially greater than γ c . 
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n antibiotic. Long term studies have shown that this rate of re-

ersion can vary significantly depending on the strain, drug, and

esistance mechanism in question ( Bean et al., 2005 ). To parame-

erise this process we assume that a mutational state’s fitness cost

s independent of the degree to which that state can resist the an-

ibiotic, and as such mean reversion occurs at a constant rate θ .

ll mutations therefore result in some degree of fitness loss (as

hey steer the cell away from its optimal wild-type state) when

onsidered independently of the effect of antibiotic-driven selec-

ion. A constant ( γ -independent) reversion rate represents a min-

mal null-hypothesis when this dependence is unknown, and is

upported by two experimental observations which provide mech-

nisms for decoupling the potency of resistance mutations from

heir fitness cost. First, organisms evolve to largely negate the fit-

ess cost of resistance ( MacLean et al., 2010; Andersson, 2006 ), of-

en on a timescale that is faster than the development of resis-

ance itself ( Moura De Sousa et al., 2015 ). Second, a particular γ
alue may result from a small number of mutations with large ef-

ect (or a large number with small effect) on resistance ( Bloom and

rnold, 2009 ), and so in general larger γ values do not necessarily

ncur a greater fitness cost. 

We combine the factors above to model the dynamics of γ
n the absence of selection (i.e. zero antibiotic, γc = −∞ ) with a

tochastic differential equation of the form: 

 γt = −θ sign (γt − μ) d t + 

√ 

2 D γ d B t (2)

ere B t is a Wiener process (Brownian motion), scaled by diffusion

onstant D γ . Eq. (2) is an example of a stochastic differential equa-

ion (SDE) with discontinuous drift, for which the stationary solu-

ion is a Laplace distribution with E [ γ ] = μ and V ar[ γ ] = 2 D 

2 
γ /θ2 

 Simonsen et al., 2013 ). The stationary distribution of coping abil-

ty will be (as highlighted by past studies of evolutionary processes

 Bloom et al., 2007; Amitai et al., 2007 )) an important determinant

f a cell’s ability to adapt when selection for this trait occurs (i.e.

n antibiotic is encountered). We define φ = 

√ 

V ar[ γ ] = 

√ 

2 D γ /θ
s a convenient measure of variability for our system. We will also

enerally set μ = 0 , such that E [ γ ] = 0 and a coping challenge

c = 0 (corresponding to [ A ] 50 ) will prevent 50% of cells from repli-

ating. A particle whose motion is described by Eq. (2) has a char-

cteristic speed ∝ 

√ 

D γ and distance ∝ φ, meaning that the charac-

eristic timescale over which it traverses its stationary distribution

s t c ∝ 

√ 

D γ /θ . In Fig. 1 we illustrate the interplay between the dis-

ribution of γ values for a population of cells and a temporal or

patial step in the value of γ c . 

Past studies of evolutionary processes have similarly employed

tochastic differential equations to model the drift in trait values

ver time ( Lande, 1976; Hansen, 1997 ). In some cases these treat-

ents include pure Brownian motion ( Hermsen, 2016 ), but with-

ut mean reversion the variance of a trait value grows linearly in

ime. Others have described adaptive evolution using an Ornstein-

hlenbeck process ( Hansen, 1997 ), in which the rate of mean-

eversion is proportional to the distance of a trait from an optimal

alue μ∗. Though this yields a bounded variance, it assumes that

he drift process (toward μ∗) is driven by selection for improve-

ent in the trait being studied. The interpretation of the SDE in

q. (2) differs markedly from past modelling philosophies: Here we

ave separated out the selection process which drives change in γ
n response to environmental pressures (which is instead imposed

y γ c -dependent reproduction) from the underlying mutation pro-

ess that governs variation in γ in the absence of antibiotic-driven

election (which is entirely described by Eq. (2) ). In Note S7 we

escribe a discretised version of Eq. (2) , which constrains γ to

nly take integer multiples of a discretisation parameter ω. This re-

ects the outcome of experimental studies which have found that

n some cases resistance can develop in discontinuous jumps due
o distinct high-impact mutations ( Toprak et al., 2012; Chevereau

t al., 2015; Barrick and Lenski, 2013 ), rather than as a continuous

rocess. 

.2. Spatio-temporal dynamics and selection 

Each cell’s (unconstrained) spatial diffusion is described by the

tochastic differential equation: 

 x t = 

√ 

2 D x d B t (3) 

here B t is a Wiener process (Brownian motion) and D x is the

patial diffusion rate. The probability density function of the posi-

ion of a particle whose motion is described by Eq. (3) is a normal

istribution with E [ x t ] = 0 and V ar[ x t ] = 2 D x t meaning that (given

ufficient time) unconstrained cells will reach any given spatial lo-

ation. 

Each cell is assumed to die at rate δ, and as such when γ < γ c 

he number of surviving cells in a population will decrease expo-

entially over time (as is observed experimentally ( Brauner et al.,

017 )). The reproduction rate of a cell i is given by: 

 i = (1 + δ) 
(

1 −
∑ 

j 

�(x i − x j | σ ) 

k 

)
H(γi − γc (x i , t)) (4)

here the 1 + δ pre-factor is a scaling factor of the reproduction

ate that arises in non-dimensionalisation (see Note S1), and H

s the Heaviside step function. �( 	x | σ ) is a Gaussian interaction

ernel that is convolved across all cell locations x j to calculate

he local cell density (and hence resource availability) at x i , which

as interaction range (standard deviation) σ . Finally, k is the spa-

ial carrying capacity (resource availability) per unit distance, and

c ( x i , t ) is the coping challenge as a function of position and time.

hen a cell replicates a daughter cell with the same γ is placed at
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the same location. For spatial simulations we will generally choose

a γ c that is independent of time. However, if we assume every cell

has the same location (equivalent to setting σ → ∞ ) then our mod-

elling approach can be used to analyse situations in which adap-

tation is driven by temporal (rather than spatial) variations in an-

tibiotic concentration (i.e. γ c ( t )). 

Considering Eq. (2) alongside the selective reproduction en-

forced by Eq. (4) allows our modelling framework to be compared

to traditional mathematical descriptions of trait evolution. Mod-

els that use the Ornstein-Uhlenbeck process and its derivatives

employ a single SDE that combines the impact of random muta-

tional changes and selective pressure on a particular trait’s value

( Hansen, 1997; Beaulieu et al., 2012; Blomberg, 2012 ). However,

in the framework proposed herein these two factors enter as two

independent selective forces: First, selection due to an antibiotic

challenge γ c is imposed by selective reproduction following from

Eq. (4) . Second, a restoring force arising from the fitness cost of re-

sistance mutations (in the absence of antibiotic) is imposed by the

drift term (with rate θ ) in Eq. (2) . 

2.3. Model implementation 

For many situations that we wish to analyse our model will be

analytically intractable, necessitating analysis via numerical sim-

ulation. To achieve this the model was implemented in MATLAB

(template code is provided with the supplementary material) and

numerically integrated as described in Note S2. The parameter val-

ues described in Note S3 are used unless otherwise specified in

the Supplementary Notes that accompany each result. Though our

model considers the impact of local resource competition between

cells, it does not explicitly model the consumption of a finite re-

source pool. To account for this simulations are run for a finite

amount of time, and the maximum time permitted is either in-

terpreted as a literal time period, or a limitation imposed by an

eventual exhaustion of resources. In simulations and subsequent

figures we often express γ values in multiples of φ (the standard

deviation of the steady-state γ distribution in the absence of an-

tibiotic) to enable direct comparison between different simulated

scenarios. 

2.4. Modelling multiple resistance strategies 

We consider a situation in which our cell’s total coping abil-

ity γ̄ is determined by the combination of multiple mutually or-

thogonal adaptation strategies, γ i , each governed by Eq. (2) . The

mutual orthogonality of these strategies implies that the correla-

tion between their Brownian motion terms (as in Eq. (2) ) is zero

(or at least very small), and that there is no functional dependence

between their mutation processes (i.e. D γi 
is not a function of γ j 

for i � = j ). Examples of orthogonal strategies are those for which a

change in the effectiveness of one strategy does not directly af-

fect the potential for improvement in the other. For example, if γ 1 

represents adaptation primarily driven by development of efflux

systems, and γ 2 represents adaptation primarily driven by active-

site mutation, then we anticipate that mutations which cause a

substantial increase in γ 1 will not necessarily impact γ 2 (though

they may impact γ̄ ). An example of two non-orthogonal strategies

would be if we chose γ 1,2 to both represent different paths of ac-

tive site mutation, and thus improvement in one could force im-

provement in the other (e.g. correlated Brownian motion), or the

state of one path could influence the rate of change of the other

(e.g. if they can be inter-converted via a small number of muta-

tions ( Palmer et al., 2015 )). For γ̄ we propose a function of the

form: 

γ̄ = 

∑ 

γi (5)
hich is motivated by the following assumptions: When strate-

ies combine to determine γ̄ they should do so multiplicatively

n terms of antibiotic concentration, and hence additively in terms

f γ (following from Eq. (1) ). This means that if (for example) γ i 

epresents an efflux pump strategy which removes 90% of an an-

ibiotic from the cell’s interior, then each γ j ( j � = i ) evolves as if it is

ubjected to 10% of the total antibiotic concentration. When a new

trategy is considered (i.e. adding an additional γ i to the calcula-

ion in Eq. (5) ) the value of D γi 
will depend on how readily this

trategy can evolve to impact γ̄ (if γ i has minimal impact on a

ell’s coping ability then D γi 
≈ 0 ). Consequently we set each μi = 0

uch that considering a new strategy in Eq. (5) will not impact γ̄
unless it has evolved to contribute some form of resistance). Be-

ause each strategy is governed by an independent Wiener pro-

ess in Eq. (2) we have (when at steady state with γc = −∞ ) that
¯ 2 = V ar[ ̄γ ] = 

∑ 

φ2 
i 

. 

. Results 

.1. Adaptation driven by spatial variation in antibiotic concentration 

A range of experimental and theoretical studies have demon-

trated that spatial gradients ( Zhang et al., 2011 ) or steps

 Baym et al., 2016a ) in antibiotic concentration can accelerate the

cquisition of resistance conferring mutations in bacterial popula-

ions. In Fig. 2 we examine the adaptive behaviour predicted by

ur model to explain these results. 

Fig. 2 a illustrates a population of cells that encounters a spatial

amp in antibiotic concentration. Near x ≈ 0, γ c is well below the

ild-type cell’s resilience, and so an approximately Laplacian dis-

ribution of coping abilities is maintained. As γ c rises it imparts

 selection bias upon the population, favouring cells with larger γ
nd driving up the mean coping ability. At the leading edge of the

dapting front the variability of γ values is substantially decreased

ecause cells that migrate into free spatial regions can rapidly re-

roduce (due to the lack of resource competition), meaning that

olonisation is driven by cells with γ values near to the mean (lo-

al) value (and thus the evolutionary process is not driven by only

ts fittest constituents ( Baym et al., 2016a )). There is an optimal an-

ibiotic gradient at which γ grows most quickly ( Fig. 2 b), originally

nvestigated (using a model that is for this case similar to ours) by

ermsen (2016) . In Fig. S1 we provide examples similar to Fig. 2 a

hat illustrate this behaviour for different gradients: When α < < 1

daptation is limited by the rate of spatial diffusion ( D x ), whereas

or α > > 1 adaptation is limited by rate at which variation in cop-

ng ability occurs ( D γ ) ( Hermsen, 2016 ). In the large α case vari-

bility in γ decreases, with the population’s average gathering near

ts optimum (as found in previous studies of population evolu-

ion in changing environments ( Droz and Pkalski, 2006 )), which

mpedes adaptation since cells at the adaptive front mix exten-

ively with those with lower γ . This phenomenon has been experi-

entally observed to slow adaptation at range margins ( Bridle and

ines, 2007 ). In Fig. 2 b the observed increase in adaptation rate at

reater population densities ( k ) aligns with the experimental ob-

ervation that the rate at which resistance develops is increased

or larger inoculum sizes ( Gould and MacKenzie, 2002 ). 

Fig. 2 c illustrates the response of a population of cells to a se-

ies of steps in antibiotic concentration: The first step is overcome,

ut within the given time the population is unable to make the

ubsequent jump to the region of higher concentration. We find

hat the probability of overcoming a fixed step in antibiotic is near

ero for small population densities, but rises to unity when the cell

ensity increases ( Fig. 2 d). This mirrors the experimental observa-

ions of Hol et al., who found that a critical bacterial density must

e overcome in order to overcome a spatial step in antibiotic con-

entration ( Hol et al., 2016 ). In Fig. 2 e we simulate a colony of cells
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Fig. 2. Spatial antibiotic variation encourages development of resistance. a) Probability density level curves of a population of cells in terms of coping ability γ and 

position x as they evolve in the presence of a spatial gradient in antibiotic γc = x − 200 . b) The adaptation rate as a function of spatial antibiotic gradient, γc = αx, is 

maximised when α ≈ 1. Simulation details are presented in Note S8, and examples of adaptation with varying α are presented in Fig. S1a–c. c) Probability density level 

curves of a population evolving in response to two spatial steps in antibiotic concentration. For x < 100 γc = −∞ , for 100 < x < 200 γc = 2 φ, and for x > 200 γc = 6 φ. The 

population is able to overcome the first step, but not the second. d) Probability of a fixed step in antibiotic concentration being overcome as a function of spatial population 

density k (Note S9). A similar plot as a function of γ c is provided in Fig. S1d e) The rate of evolution in a two-step system (similar to c) as a function of the intermediate 

step size (Note S11). Also plot is the effect of adding a delay to account for extended spatial separation between the steps. f) The probability of a single step in antibiotic 

concentration being overcome as a function of an organism-wide mutation rate disturbance ε, with different values of δ (Note S12). There exists an optimal region of 

intermediate ε where this probability is maximised. 
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s it attempts to colonise a region of large antibiotic concentra-

ion by first colonising a step of intermediate height (the situation

llustrated in Fig. 2 c). The rate of colonisation is maximal when

he intermediate step is approximately half of the final step size,

hich aligns with the experimental results of Baym et al. (2016a) .

n Fig. 2 f we model the interaction of our system with a muta-

en which scales cell-wide mutation rates by a factor ε (see Note

12 for full description). This reveals an optimal range of muta-

ion rates within which a population has a high probability of over-

oming a step in antibiotic concentration: For small mutation rates

ariability in γ is too small to overcome the antibiotic step, whilst

or high mutation rates accelerated cell death reduces cell density

nd hence their ability to adapt. This simulation parallels an exper-

mental study by Gerrish and García-Lerma (2003) , where it was

bserved that both low and high mutation rates reduced the abil-

ty of a pathogen to adapt to a drug treatment. 

.2. Adaptation driven by temporal variation in antibiotic 

oncentration 

As with spatial gradients, experimental studies have demon-

trated that temporal gradients and steps in antibiotic concentra-

ion can accelerate the evolution of resistant cell lines ( Toprak

t al., 2012; Lindsey et al., 2013; Chevereau et al., 2015; Oz et al.,

014; Zampieri et al., 2017 ). We now adjust our model (for details

ee Note S3) to consider a single, well mixed population (as might

e found in a shaken liquid media experiment) for which spatial

rganisation of cells is not important. 
When presented with a temporal antibiotic ramp ( γc = αt) the

ean γ value for a cell population approximately coincides with

c ( Fig. 3 a). For large α the cells are no longer able to mutate suf-

ciently quickly, and we observe a rapid drop in population density

nd survivability ( Fig. 3 b). Unlike in Fig. 2 b, for temporal gradients

e observe that the mean γ value for a population of cells grows

t rate α, up to a critical value (in this case α ≈ 1), after which

ll cells die out (examples are presented in Figs. S2a–f, and the

ependence of adaptation rate on α is plot in Fig. S3). This corre-

ponds to the results of Lindsey et al , who found that cells were

nable to adapt when the temporal rate of antibiotic increase was

bove a threshold value ( Lindsey et al., 2013 ). This result also illus-

rates that in order to maintain a sub-maximal population density

here is a narrow range of feasible rates of antibiotic increase with

ime. This was observed experimentally by Toprak et al. (2012) ,

ho used a temporal antibiotic gradient (which was approximately

inear when plot on log-scale, corresponding here to γ c ∝ t ) to reg-

late the density of an adapting bacterial population. 

When encountering a large step rise in antibiotic concentration

he majority of cells (with γ ≈ 0 initially) rapidly die out, however,

 few cells with large γ overcome the step and return the popu-

ation to its maximal density following a short proliferation delay

 Fig. 3 c). In such a circumstance it is possible for there to be a

reater rate of adaptation (change in mean γ value over time) for

 short period than for antibiotic ramps (i.e. Fig. 2 b), as predicted

y Greulich et al. (2012) . In Fig. 3 d (left axis) we plot the prob-

bility of a given cell being able to replicate (i.e. having γ > γ c )

mmediately following a step increase in γ c , which is determined
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Fig. 3. Temporal antibiotic variation encourages development of resistance . a) Probability density level curves as a function of time for cells evolving in the presence of 

a temporal gradient in antibiotic concentration γc = t − 50 . Here we are plotting a population of cells at a single location at many points in time (rather than a population 

of cells at many locations at a single point in time as in Fig. 2 a). b) The normalised population density (left axis) and the probability of a population of cells being able to 

survive indefinitely (right axis) as a function of the temporal gradient in antibiotic concentration (with γc = αt). Simulation details are presented in Note S13, and examples 

of cell populations growing with various α are in Fig. S2a–f. c) Probability density level curves as a function of time for cells that encounter a step rise in antibiotic. For 

t < 50 γc = −∞ , and for t > 50 γc = 4 φ. The introduction of antibiotic kills almost all cells at t = 50 , but survivors have re-established a large population by t ≈ 70. d) The 

probability of a single cell surviving (left axis) and the population surviving (right axis) as a function of the size of an antibiotic step rise γ c (Note S14). We vary the 

parameters θ and D γ between trials, observing that the population survival probability changes, though the probability of a given cell surviving remains unchanged (because 

φ varies when θ or D γ change). e) The mean ( E [ γ /φ] ) and standard deviation ( σ [ γ / φ]) of γ for a population of cells allowed to evolve for a long period in the presence of a 

fixed γ c (Note S15). f) The probability of a clonal population (initially all cells have γ = 0 ) surviving a step rise in antibiotic concentration following a period of proliferation 

( t p ) during which either γc = −∞ or γc = 0 (Note S17). 
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by the cumulative density function of the Laplace distribution from

Eq. (2) . The shape of this curve replicates typical killing curves ob-

served for antibiotics ( Liu et al., 2004 ) when plot as a linear func-

tion of antibiotic concentration (see Note S4). The point at which

this curve drops to 0.001 ( γ c / φ ≈ 4) approximates the MBC (mini-

mum bactericidal concentration) of the antibiotic, which is gener-

ally defined as the concentration required to reduce 99.9% of bac-

terial density ( Wang et al., 2016 ). The MIC (minimum inhibitory

concentration) takes a similar value ( Andersson and Hughes, 2014 ).

The problem with using these metrics for measuring antibiotic ef-

ficacy (as discussed by Liu et al. (2004) ) is highlighted by the

population survival curve ( Fig. 3 d right axis): Even though the

vast majority of cells are killed above the MBC, the survival of

even a single cell with high resilience can re-establish the popu-

lation. The point above which this does not occur (i.e. the point

where the population survival probability drops to zero, here at

γ c / φ ≈ 8) is referred to as the MPC (mutant prevention concentra-

tion) ( Wang et al., 2016 ). The distance between these curves rep-

resents the mutant selection window (MSW), a range of concen-

trations which is clinically important as it encourages selection for

highly resistant mutants ( Bell and MacLean, 2018 ). 

In Fig. 3 d we also plot changes anticipated in the Population

Survival probability when either D γ or θ is varied while the step in

antibiotic maintained at a constant multiple of φ (so that each cell

survival probability curve is identical). Adjusting these parameters

highlights the relative influence of two means via which a popula-
 (  
ion can overcome a temporal step in γ c : The first is by having at

east one cell with γ > γ c when antibiotic is introduced (often as-

umed to be the predominant route to resistance ( Andersson and

ughes, 2014 )), allowing the step to be overcome (this probability

s plot in Fig. S4). The second is having γ < γ c immediately fol-

owing antibiotic introduction, but evolving to a state with γ > γ c 

rior to cell death. If the former was the only mechanism then

e would expect changes in D γ or θ (which determine φ) to have

o influence on the population survival probability for a step of

xed γ c / φ. This is not the case, demonstrating that some popula-

ions in which no cells are able to reproduce post-antibiotic addi-

ion can still recover. We can investigate this situation analytically

see Note S5), finding that the probability that a cell with coping

bility γ < γ c will survive (i.e. it reaches γ c before dying) thereby

ustaining the population is given by: 

p(P opul ation Surv i v al ) = exp 

(
− ν

√ 

2 D γ δ

θ

)
(6)

here ν is a dimensionless parameter measuring the distance be-

ween the cell’s initial γ and γ c . The dependence of Eq. (6) on δ
ighlights the impact that the development of tolerant cell types

slowly dying in the presence of antibiotic ( Brauner et al., 2016 ))

as upon the emergence of resistance ( Cohen et al., 2013; Frid-

an et al., 2014; Levin-Reisman et al., 2017 ): Tolerant cell pop-

lations (those with a smaller value of δ which die off slowly

 Brauner et al., 2017 )) often develop as a pre-cursor to actual
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esistance ( Levin-Reisman et al., 2017 ). Note S6 derives a similar

xpression to Eq. (6) for the case in which γ c depends linearly

n time, demonstrating the antibiotic’s inefficacy when its (initially

arge) concentration is reduced rapidly. 

In Fig. 3 e we plot the steady-state mean coping ability ( E [ γ ] )

nd standard deviation ( σ [ γ ]) of a population of cells subjected to

 constant γ c value. Substantial adaptation occurs well below the

BC ( γ c / φ ≈ 4 in Fig. 3 d), and even below the IC 50 ( γc = 0 ). There

as been substantial debate regarding whether selection at low an-

ibiotic concentrations is important ( Jansen et al., 2013; Anders-

on and Hughes, 2014 ), and whether low-concentration treatments

hould be employed to minimise resistance evolution ( Read et al.,

011; Kouyos et al., 2014 ). According to the classical MSW hypoth-

sis selection is only relevant within the MSW region ( Jansen et al.,

013 ), however, many studies have demonstrated that significant

daptation can occur in response to low antibiotic concentrations

 Andersson and Hughes, 2014 ). Our simulations support the case

or adaptation at low concentrations, though they predict that the

egree of adaptation in this region will be limited (i.e. cells will

ot become resistant to very high antibiotic concentrations). This

ligns with studies of evolutionary processes which have demon-

trated that many traits (such as protein stability ( Taverna and

oldstein, 2002 )) will typically drift toward their minimum evo-

utionary requirement, as values much higher do not offer a selec-

ive benefit ( Bloom et al., 2006 ). For the variability of γ within a

opulation Fig. 3 e suggests the existence of two distinct regimes:

hen γ c < μ we have σ [ γ ] ≈φ (following from Eq. (2) ), though

his decreases as γc → 0 − due to cells with very low γ values be-

ng unable to reproduce. When γ c grows beyond γc = 0 there is

 sharp rise in σ [ γ ] to a new constant value of ≈ 1.7 φ, as the

opulation’s distribution of γ values is now bounded below by

c . This behaviour is observed as a widening of the distribution

n Fig. 1 , highlighting our model’s prediction that the distribution

f γ values in a population of cells growing in the presence of

c > 0 will tend to have both an increased mean and standard de-

iation, making it more likely to adapt to a future rise in γ c . That

aid, following any rise in antibiotic concentration there is a pe-

iod during which σ [ γ ] is reduced ((Fig. S5) whilst the population

e-establishes its genetic diversity (i.e. reaching a new steady state

istribution of γ ). 

In Fig. 3 f we initialise a clonal population (in which all cells be-

in with γ = 0 ) and allow cells to proliferate (and mutate) for a

eriod t p , before subjecting the population to a step rise in antibi-

tic concentration. We observe that it takes a substantial amount

f time for sufficient intra-population variability in γ to develop

o enable the population to overcome the antibiotic step when it

s encountered. This process is accelerated significantly when cells

roliferate in the presence of a low antibiotic concentration ( γc =
 ), highlighting the clinical role that low concentrations can play

n pre-adapting populations, thereby enabling them to overcome

arge antibiotic doses at later times. Related situations that include

he temporary addition or removal (after a period of adaptation) of

n antibiotic are presented in Fig. S6. In the latter case we observe

hat the population survival probability remains at unity for a long

eriod after antibiotic removal, highlighting one of the major clin-

cal challenges posed by antibiotic resistance: Even in the absence

f antibiotic a pathogen’s return to sensitivity is slow ( MacLean

t al., 2010; Durão et al., 2018 ). In Fig. S6e we plot the probabil-

ty that a population is able to overcome a large temporal step in

ntibiotic concentration as a function of the time it spends at an

ntermediate antibiotic concentration. An approximately linear rise

s observed, with the probability of survival approaching unity as

he time given for adaptation increases, again demonstrating that

ast environmental conditions can greatly affect a population’s sur-

ivability following a rapid environmental change (as observed by

onzalez and Bell (2013) ). 
.3. Multiple strategies for resistance 

For many antibiotics there is a range of potential mecha-

isms which can develop in combination to provide resistance

 Palmer et al., 2018 ). For example, efflux pumps (which remove an

ntibiotic from the cell’s interior), or mutation in the protein/s that

irectly interact with the antibiotic (thereby disrupting its bind-

ng) can both contribute to a cell’s coping ability. Experimental

tudies have demonstrated that there are often a number of evo-

utionary trajectories which a cell can take to acquire resistance

 Barbosa et al., 2017; Palmer et al., 2018 ), and that competition be-

ween different trajectories can impact the overall rate of adapta-

ion ( Ogbunugafor and Eppstein, 2016 ). In this section we employ

ur modelling framework to analyse a system in which there are

ultiple strategies competing to develop resistance. 

We first simulate a population of cells growing in the pres-

nce of a temporal gradient of antibiotic concentration (e.g. as in

ig. 3 a) for which there are two potential strategies for resistance,

1 and γ 2 , and the total coping ability is given by γ̄ = γ1 + γ2 .

ach strategy is assumed to have an equal ability to mutate over

ime ( D γ1 
= D γ2 

), but their relative drift rate is varied according

o θ1 = θ/ 
√ 

1 − ζ and θ2 = θ/ 
√ 

ζ such that 1 /θ2 = 1 /θ2 
1 

+ 1 /θ2 
2 

. At

teady-state (and in the absence of antibiotic, γc = −∞ ) V ar[ ̄γ ] is

hus independent of ζ , allowing us to compare populations with

quivalent initial distributions of coping ability. In Fig. 4 a,b we find

hat when ζ = 0 . 5 both strategies adapt at half the rate of the tem-

oral gradient (an example is illustrated in Fig. S7a). In the pres-

nce of very strong mean reversion for strategy 2 ( ζ → 0), γ 2 does

ot develop at all (an example is illustrated in Fig. S7c), as would

e expected from a resistance strategy with very high fitness cost

hen a better alternative is available. Interestingly, for intermedi-

te ζ values ( ζ ≈ 10 −2 ) at which the mean adaptation rate of γ 2 

pproaches zero there is a reduced probability ( Fig. 4 a) that the

opulation survives indefinitely: In this case population die out can

ccur (an example is illustrated in Fig. S7b) when γ 2 temporar-

ly rises, reducing the pressure on γ 1 to adapt and thus leaving

¯ too far below γ c to keep up when γ 2 ’s strong mean reversion

rives it back toward μ2 = 0 . This phenomenon is primarily ob-

erved for intermediate ζ values because when ζ 	 10 −2 selective

ressure can overcome the mean reversion to allow γ 2 to perma-

ently adapt, whereas for ζ 
 10 −2 it is very unlikely that γ 2 will

eviate from zero at any point. In Fig. S7i,j an alternate situation

s investigated, in which θ1 = θ and θ2 = ηθ ; in this case when

2 has no mean reversion ( η → 0) γ 1 still develops, with only a

lightly reduced rate. 

We now set θ1 = θ2 , but vary the mutation rate of each strategy

ccording to D γ1 
= D γ

√ 

1 − ξ and D γ2 
= D γ

√ 

ξ , such that D 

2 
γ =

 

2 
γ1 

+ D 

2 
γ2 

. We observe ( Fig. 4 c) that as ξ grows our population

oes from developing just one strategy to favouring a combina-

ion of both. In Fig. 4 d we examine the influence of ζ or ξ on the

robability of γ 1 developing when the population is confronted

ith a temporal step in antibiotic concentration (i.e. as in Fig. 3 c).

e observe that outside of a narrow switching region there is a

trong bias in favour of whichever strategy has a greater mutation

ate (larger D γi 
) or smaller rate of mean reversion / fitness cost

smaller θ i ). In each case the winning resistance strategy devel-

ps largely to the exclusion of the other, such that max (γ1 , γ2 ) ≈ γ̄
nd min( γ 1 , γ 2 ) ≈ 0 (demonstrated in Fig. S7d,e). A similar result

s observed when simulations are initialilsed with one strategy al-

eady dominating ( E [ γ1 ] > γc > E [ γ2 ] at t = 0 , Fig. S7f,g): In this

ase if strategy γ 2 is “better” than γ 1 (large ξ or ζ ) then it will

eventually) overcome γ 1 ’s early lead and take over the popula-

ion. This result highlights an interesting difference between tem-

oral steps and ramps; for a step the better strategy will eventu-

lly dominate in the population (regardless of initial conditions),
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Fig. 4. Competition between multiple paths to antibiotic resistance. We consider two strategies γ 1 and γ 2 which combine as described by Eq. (5) , with either θ1 = 

θ/ 
√ 

1 − ζ and θ2 = θ/ 
√ 

ζ , or D γ1 
= D γ

√ 

1 − ξ and D γ2 
= D γ

√ 

ξ . a) The probability of the population’s survival when subjected to a temporal ramp ( α = 1 . 2 ) in antibiotic 

concentration as a function of the second strategy’s rate of mean reversion. For intermediate values of ζ there is a significant probability that the second strategy causes 

population die out (Note S21). Examples for various ξ are presented in Fig. S7a–c. b,c) The adaptation rate (defined as in Fig. 2 b) of each strategy (labelling is consistent 

across subplots b,c,e,f) as a function of ζ or ξ (Note S21). The combined rate of change in γ̄ is constant and equal to the temporal rate of change of antibiotic ( α = 1 ). d) 

The probability that Strategy 1 wins (defined as having a larger mean γ i value across the population) when the population is subjected to a temporal step in antibiotic 

concentration (Note S22), as a function of ζ (top axis) and ξ (bottom axis). e,f) Similar to b,c but for a population of cells growing on a spatial antibiotic gradient with α = 1 

(Note S25). 
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whereas if the population is driven to continually increase γ (i.e. a

temporal ramp) there is a broad parameter regime in which both

strategies develop. 

In Fig. 4 e,f simulations (which are otherwise similar to Fig. 4 b,c)

are performed for a population of cells that encounters a spatial

(rather than temporal) ramp of antibiotic concentration. In this

case there is no possibility of the population dying out (as re-

gions of low antibiotic concentration are always accessible), but

there is a minimum in the adaptation rate of γ̄ at ζ ≈ 10 −2 for

similar reasons to Fig. 4 a. We also observe that the inclusion of

a second strategy (when V ar[ ̄γ ] is kept constant) only results in

a modest increase in the adaptation rate of γ̄ . Our results thus

imply that when resistance is determined by multiple orthogonal

strategies adaptation can occur more quickly, even when popula-

tions have an equivalent wild-type distribution of resistance (i.e.

 ar[ ̄γ ] is constant). When a spatial step is simulated (Fig. S8a,b)

we again find that it will typically be colonised by γ 2 if it is bet-

ter than γ 1 (large ξ or ζ ). However, in this case both resistance

strategies tend to develop to some extent (one does not exclude

the other), meaning that γ̄ is determined by significant contribu-

tions from both (Fig. S8c,d). 

4. Discussion 

In this paper we have developed a theoretical model that de-

scribes the evolution of resistance in response to spatially- or

temporally-varying antibiotic concentrations. Though both kinds of

inhomogeneities can foster the development of high levels of re-

sistance, they are not necessarily directly equivalent. For tempo-
al steps in antibiotic concentration cells generally require γ > γ c 

t the time of dosing in order for the population to survive

this is often assumed to be the predominant route to resistance

 Andersson and Hughes, 2014 )), though there is the rare possi-

ility of a “tolerance” path to population resistance, as described

y Eq. (6) . For spatial steps in antibiotic this path to resistance

s less important. Instead, cells can undergo continual variation in

near a discontinuity in their environment (a point at which γ c 

ncreases), and once a mutant with γ > γ c appears they quickly

igrate into the now accessible resource-rich region. This corre-

ponds to experimental observations that the evolutionary process

s not driven by its fittest constituents, but rather those that are

oth sufficiently fit and sufficiently close to an environmental in-

omogeneity ( Baym et al., 2016a ). The overcoming of spatial in-

omogeneities is aided by the fact that there are continually ac-

essible regions of smaller γ c in which cells can proliferate, which

undamentally changes the dynamics of competition between mul-

iple resistance strategies in response to each kind of inhomogene-

ty. For example, we found that the presence of a second adap-

ive strategy for resistance can lead to a population’s extinction in

he presence of an otherwise manageable temporal antibiotic gra-

ient (but not for a similar spatial gradient). Furthermore, when

ells are presented with temporal steps in antibiotic concentration

ypically one strategy will be developed to the exclusion of others,

hereas a combination of resistance strategies is likely to evolve

n response to spatial steps. 

The rate at which resistance increases in time (d γ /d t ) also

iffers significantly for the two classes of inhomogeneity: for

emporal gradients adaptation rate is determined directly by the
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radient’s magnitude (d γ /d t ≈α) up to a limiting α where popula-

ion extinction occurs. Meanwhile, for spatial gradients adaptation

ate is determined by a trade-off between spatial diffusion (limit-

ng for small α) and the population size near to an accessible (via

mall γ increase) region of larger γ c (limiting for large α). These

esults highlight the importance of avoiding intermediate antibi-

tic doses which, if they produce intermediate spatial/temporal

oncentration gradients, maximise the rate at which resistance

merges. 

Persister and tolerant cell states have been recognised as

laying a prominent part in the development of resistance

 Brauner et al., 2016 ). Our model (see Eq. (6) ) supports the experi-

ental observation that tolerance (or greater longevity in the pres-

nce of antibiotics) may improve the likelihood of resistance de-

eloping ( Cohen et al., 2013; Fridman et al., 2014; Levin-Reisman

t al., 2017 ). However, since the death rate ( δ) is assumed to be

omogenous within each population, we do not account for the

ide range of persister behaviours that have been experimentally

bserved ( Brauner et al., 2016 ): In such cases a small fraction of

 clonal cell population may remain dormant in the presence of

n antibiotic (via a range of mechanisms ( Harms et al., 2016 )),

llowing them to re-establish the entire population when condi-

ions are more favourable. To capture this behaviour our model

ould likely need to introduce additional parameters to provide a

ore complex description of cell states, or separate cells into sub-

opulations with differing parameter values. 

At the level of individual cells, our modelling approach as-

umes that antibiotic resistance develops in a continuous man-

er (governed by Eq. (2) ) as is frequently observed experimentally

 Toprak et al., 2012; Chevereau et al., 2015; Barrick and Lenski,

013; Palmer et al., 2018 ). However, in some cases resistance can

evelop in jumps due to distinct high-impact mutations ( Toprak

t al., 2012; Chevereau et al., 2015; Barrick and Lenski, 2013 ) (or

y transfer of genes via plasmids). This possibility is investigated

n Note S7, where qualitatively similar results to the continuous

ase are found when γ is constrained to integer multiples of a

iscretisation parameter ω. Though both treatments of γ allow

opulations as a whole to make large non-continuous jumps in

esistance (e.g. as in Fig. 3 c), additional parameters would be re-

uired to account for the complex mutational landscapes found

n practice for some antibiotics: This might (for example) include

efining D γ as an explicit function of γ to account for features

uch as fitness valleys in adaptive processes ( Greulich et al., 2012 )

hough any such function would be highly antibiotic- and resis-

ance strategy-dependent ( Ogbunugafor and Eppstein, 2016; Bol-

enbach, 2015 ). Likewise, in some cases an upper bound on the ef-

ectiveness of certain resistance strategies may be present ( Toprak

t al., 2012; Luka ̌cišinová and Bollenbach, 2017 ), and (for adap-

ive evolution in general) certain paths may lead to sub-optimal

utcomes ( Dickinson et al., 2013 ). Models similar to ours may be

seful in describing the trapping of evolution in sub-optimal fit-

ess states ( de Vos et al., 2013 ), which may be realised exper-

mentally using chemical/environmental factors to steer adaptive

rocesses down sub-optimal paths ( Furusawa et al., 2018; Gifford

t al., 2018 ). 

In recent years it has become apparent that the development

f bacterial resistance to antibiotics can be significantly acceler-

ted by spatiotemporal variation in antibiotic concentration. We

ave developed a mathematical description of these processes,

nd applied it to analyse a diverse range of experimental results.

ur model provides a framework for informing and analysing fu-

ure studies of the evolution of antibiotic resistance, and may be

pplicable to many similar adaptive processes in which the rate

f fitness cost-driven drift towards a wild type state (here de-

cribed by θ ) can be assumed to be independent of the trait’s

alue ( γ ). 
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