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ABSTRACT: The robustness and reliability of synthetic biological
systems can be substantially improved by the introduction of
feedback control architectures that parallel those employed in
traditional engineering disciplines. One common control goal is
adaptation (or disturbance rejection), which refers to a system’s
ability to maintain a constant output despite variation in some of its
constituent processes (as frequently occurs in noisy cellular
environments) or external perturbations. In this paper, we propose
and analyze a control architecture that employs integrase and
excisionase proteins to invert regions of DNA and an mRNA−
mRNA annihilation reaction. Combined, these components
approximate the functionality of a switching controller (as
employed in classical control engineering) with three distinct
operational modes. We demonstrate that this system is capable of near-perfect adaptation to variation in rates of both
transcription and translation and can also operate without excessive consumption of cellular resources. The system’s steady-state
behavior is analyzed, and limits on its operating range are derived. Deterministic simulations of its dynamics are presented and
are then extended to the stochastic case, which treats biochemical reactions as discrete events.
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Recent work in synthetic biological research has focused on
the development of control architectures that parallel those

employed in other engineering disciplines,1,2 with the aim of
improving the robustness and reliability of engineered biological
systems.3 A central goal of this work has been the creation of
biological systems capable of adaptation (e.g., to achieve
disturbance rejection). This can be loosely defined as the ability
of a system to maintain one variable’s value (for example, the
concentration of a biochemical species) constant as the
parameters or behavior of a system with which it interacts
varies. Adaptation has been observed to occur in some natural
systems,4,5 structural design constraints that must be satisfied to
achieve this functionality have been outlined,6,7 and control
architectures that achieve near-perfect adaptation have recently
been experimentally demonstrated.8 Similar feedback circuits
have also been created using a range of biological components,
such as synthetic protein scaffolds9 and sigma/antisigma
factors.8,10 However, at present, these implementations struggle
to overcome challenges such as leakiness of their “integrator”
components (which are required for perfect adaptation) because
of dilution/degradation of their constitutent components.11,12

This has led to the proposition of alternative approaches that,
though not allowing perfect adaptation, nevertheless come close
(for example, by employing systems that exhibit an ultrasensitive
input−output mapping13).
In this paper, we propose and analyze a different control

system that provides a range of benefits when compared to

previously proposed architectures: It allows near-perfect
rejection of disturbances to both cell-wide translation rates
(frequently arising due to ribosome sequestration14,15) and
transcription rate (arising due to fluctuations in plasmid copy
number16). Furthermore, our system is designed to operate in a
“slack region” where (at equilibrium) the expression rate of its
constituent proteins is minimized. This reduces the burden
(consumption of cellular resources) that it imparts upon its host
cell, which could otherwise adversely impact cellular growth and
the behavior of other synthetic circuits.17−20

The system proposed achieves these goals by using two
biological motifs employed in recent experimental work: First,
integrase/excisionase proteins (which have been used to
implement information storage,21,22 logic,23 and feedback
control24) are employed to flip a DNA “register” flanked by
recognition sites. This aspect of our design is motivated by a
desire to side-step the impact of dilution effects experienced by
controllers for which internal states are stored as protein
concentrations; DNA registers avoid this as their state is
maintained during duplication. Second, an mRNA−mRNA
annihilation reaction provides functionality similar to that of a
“subtraction” junction from traditional control engineering.
Biological feedback control structures that employ similar
mRNA−sRNA annihilation interactions have been theoret-
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ically11,25 and experimentally26−28 demonstrated in the
literature. The novelty of the present work thus focuses on the
interconnection of these two biological motifs, resulting in a
controller that benefits from the useful properties of each motif.
The architecture we develop is inspired by switching control
schemes (commonly employed in classical control engineer-
ing29,30), which move between discrete operational modes
depending on a reference signal.

■ RESULTS

System Description. In this study, we propose a biological
implementation of a switching controller (Figure 1a), which
aims to regulate its outputG to adapt to cell-wide disturbancesΔ
in translation rate (which could arise due to varying ribosome
availability) and Θ in transcription rate of plasmid-encoded
genes (which could arise due to varying plasmid copy number).
Figure 1b presents a block diagram for the system, outlining the
interactions between components as well as the points at which
these disturbances are introduced. Disturbance rejection is
achieved by regulating the number of plasmid DNA registers in
their ON position (which determines the transcription rate of
the controller’s output, G) via switching the controller between
three operating modes (Figure 1e).
Our proposed system consists of a plasmid-encoded

component (which includes a flippable DNA register and

genes for the system output G and mRNA z) and a genome-
encoded component (which includes mRNA z*). Also encoded
in the genome is a measurement species D, which is responsible
for coupling variations in translation rate (Δ) to the expression
of z. Control functionality is implemented using integrase (I)
and excisionase (X) proteins that flip a DNA register flanked by
recognition sites (Figure 1c), regulating the proportion of DNA
registers that are in their ON position (p, which we initially treat
as a continuous variable). I alone can flip DNA fromON toOFF,
whereas both I and X are required for the reverse flipping
operation.24 From registers in their ON position, the outputG is
transcribed as is mRNA z (encoding I). Meanwhile, an mRNA
z* that encodes both I and Z is transcribed continuously from
the genome as is measurement species D. The mRNAs z and z*
irreversibly bind to each other in such a way that translation from
each is suppressed.
The overall design can be conceptualized as an approximation

of a switching controller29,30 that operates in three distinct
modes, m0, m1, and m2 (Figure 1e), defined as follows: When
production rates of z and z* are balanced, little I or X is
produced, meaning flipping is slow (both Ron and Roff are small)
and p remains approximately constant (modem0). However, the
concentration of z (and G) can be disturbed by a change in
either transcription rate via Θ or global translation rate via Δ
(because the production of z is regulated by the measurement

Figure 1. Proposed control architecture. (a) The integrase/excisionase control architecture proposed in this work, which is designed to reject
disturbances to transcription (Θ) and translation (Δ) rates. It consists of interacting mRNA species (z, z*) that mutually annihilate, an output protein
(G), a measurement protein (D, which couples translation variation to the transcription of z), and recombinase enzymes (I, X), which flip DNA
registers (flanked by converging triangles). State variables from eq 1a−g are in red, and other parameters are as described in Table 1. (b) Block diagram
of the control system, including a selector junction for the system’s three modes. Important parameters for tuning are highlighted in purple. (c)
Illustration of integrase/excisionase mediated flipping of a DNA register between recognition sites (triangles). Solid triangles represent initial DNA
recognition sites (requiring I for flipping), and half-colored triangles represent flipped DNA sites (requiring I and X for reverse flipping). (d) DNA
flipping rates as a function of steady-state I and X values when the production rate of z (DΘpα1) is set to a fixed value, demonstrating a “slack region”
(m0, whereDΘpα1≈ 1), near which both flipping rates are small. (e) Illustration of the controller’s three switching modes. In modem0, production of
mRNA species z and z* is balanced, meaning most mRNA are bound to one another (preventing translation), and thus, DNA flipping is slow. When
the system is disturbed (by a change in cell-wide translation rate or plasmid copy number), mRNA production is out of balance, and the system enters
either modem1 (to increase outputG) orm2 (to decreaseG). Inm1, genome-expressed integrase and excisionase work together to flip DNA registers to
their ON position, whereas in m2, plasmid-expressed integrase flips registers to their OFF position.
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protein speciesD). When this inbalance in z and z* arises, either
I (if z≫ z*, mode m2) or I and X (if z≪ z*, mode m1) will be
produced, which leads to flipping of DNA registers (varying p)
to return expression of z and G to its desired set-point. The
boundaries between different control modes are illustrated
numerically in Figure 1d, where we fix the production rate of z
(DΘpα 1) and then calculate corresponding steady-state I and X
concentrations: whenDΘ pα1≈ 1 (modem 0), we have Ron, Roff
≈ 0, and so, minimal flipping occurs in either direction.
ODE Model. The proposed control system can be described

using a system of ordinary differential equations (ODEs) of the
form

D D1 2γ δ̇ = Δ − (1a)

z D p z Kzz1 1α δ̇ = Θ − − * (1b)

z z Kzz2 1α δ*̇ = − * − * (1c)

I z z II I1 2 2β β δ̇ = Δ + Δ * − (1d)

X z XX 2β δ̇ = Δ * − (1e)

G p G2 3γ δ̇ = ΔΘ − (1f)

p R I X p R I p( , )(1 ) ( )( )off oṅ = − − (1g)

where state variables D, z, z*, I, X, and G are concentrations as
defined previously, and p∈ [0,1] is the proportion of registers in
their “ON” state. α’s are transcription rates, β’s are translation
rates, γ’s are lumped transcription/translation rates, δ’s are
combined rates of degradation/dilution, and K is the binding
rate between mRNAs. The parameter Δ is used to introduce
disturbances in global (cell-wide) translation rate, and Θ
introduces disturbances in transcription from the plasmid
encoding G and z. Initially, we have Δ, Θ = 1; variation from
this value represents introduction of a disturbance. Integrase/
excisionase mediated DNA flipping is described by

R I X r f X f I( , ) ( ) ( )X Ioff off= (2a)

R I r f I( ) ( )Ion on= (2b)

f X
X

K X
( )X

X

4

4 4=
+ (2c)

f I
I

K I
( )I

I

4

4 4=
+ (2d)

where ron,off are scaling factors for the rates of DNA inversion,
KI,X are equilibrium constants that determine the concentration
of each protein required for the half-maximum flipping rate to be
achieved, and the order four Hill functions arise due to four
molecules of each protein being required (one dimer at each
recognition site) to perform DNA inversion.24,31 A summary of
the model parameters is provided in Table 1, and the numerical
values used in simulations are discussed in Supplementary
Section 1.
Steady-State Analysis. We can solve eq 1a−g at steady

state to eliminate variables D, z*, I, and X, finding that the
equilibrium concentration of z must satisfy

p
z Kz z( )1 1

2
1

α γ
δ

δ μ
ΔΘ

= +
(3a)

p
f z

f z

( ( )/ )

( ( )/ )
X X

r
r X X

2

2
on

off

β μ δ
β μ δ

=
Δ

+ Δ (3b)

z
Kz

( ) 2

1
μ

α
δ

=
+ (3c)

where we note that the factor ΔΘp (proportional to the
production rate of G) appears on the left-hand side of eq 3a. If
we have Kz≫ δ1 (i.e., most mRNA binds to its complementary
mRNA prior to degrading), then the right-hand side of eq 3a can
be simplified to give pΔΘ ∝ δ1z + α2, meaning that G will reject
changes in Δ, Θ so long as δ1z does not vary significantly. This
can be partially achieved by minimizing δ1 (as in other biological
circuits targeting adaptation11) as well as by minimizing the
sensitivity of the steady-state value of z to changes in Δ and Θ,
which we analyze in Supplementary Section 2.
This architecture’s ability to reduce variation in the steady-

state z value (and hence the term δ1z) can be conceptually
understood as arising from “ultrasensitive” behavior due to z
entering the first term in eq 3b through the fourth-order Hill
function f X. Other biological feedback controllers have been
proposed that utilize ultrasensitivity to provide similar adaptive
behavior,13 though the “ultrasensitive” component is typically
implemented using a zeroth-order process (such as a balanced
phosphorylation cycle) or high-cooperativity transcription
factor regulation.32 We define our system’s target as being the
steady-state value G0, determined by eq 1a−g when Δ, Θ = 1;
our control system aims to make the difference between its
output and this target small for disturbances Δ and Θ, (i.e., the
steady-state error |G(Δ, Θ) − G0|).
In our previous work,24 feedback controllers were built using

integrase/excisionase proteins in order to reduce the influence
of noise sources upon a circuit’s output. In ref 24, the proportion
of registers in their active state was (at equilibrium) maintained
by continuous flipping between states (i.e., I and X were both
large, and Ron and Roff were balanced). In contrast, the controller
outlined herein is designed to move between different switching
modes (Figure 1e), which drive its state toward a “slack region”,
in which integrase/excisionase concentrations are small. Thus,
at (or near) its equilibrium, our controller produces little of the
control species I and X, minimizing its burden upon the cell.

Performance Bounds.We can bound the controller’s slack
region (i.e., approximate the boundaries of m0) by maximal
concentrations of I and X, which we define as the point at which

Table 1. Summary of Model Parameters and State Variablesa

parameter description

Θ transcriptional disturbance magnitude
Δ translational disturbance magnitude
α1,2 transcription rates
βI1,I2,X translation rates
γ1,2 lumped transcription/translation rate
K mRNA−mRNA binding rate
KI,X integrase/excisionase equilibrium constant
δ1,2,3 mRNA/protein combined degradation/dilution rate
ron,off rates of DNA inversion
z, z* mRNA concentrations
G, I, X, D protein concentrations
p fraction of plasmids in “ON” position
p̂ number of plasmids in “ON” position
pT total number of plasmids per cell

aFor numerical values, see Table S1.
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flipping rates are 50% of their maximum (i.e., X = KX or I = KI
such that f X = f I = 0.5). In this slack region, we have I < KI and X
< KX, and thus, flipping occurs slowly. The system leaves this
slack region (into eitherm2 with I > KI orm1 with X > KX and I >
KI) for only short periods of time (immediately following a
change in Δ or Θ), during which fast convergence (variation in
p) occurs to bring the output G back toward G0. To assess the
range ofΔ orΘ values for which the system’s steady state lies in
this slack region, we solve eq 1c and either eq 1d or 1e for z at
steady state giving

z
K

K KX
X X

X

2 1 2

2

α β δ δ
δ

=
Δ −

(4a)

z
KK s

K2I I
I I

I
,

2 1 1

1

δ β δ
β

=
− Δ ±

Δ+ −
(4b)

s KK K( ) 4I I I I2 1 1
2 2

2 1 2δ β δ α β β= + Δ − Δ (4c)

and substitute these expressions into eq 3a−c. We can solve the
resulting equation forΔ (withΘ = 1) orΘ (withΔ = 1) to yield
ΔI−,I+,X and ΘI−,I+,X corresponding to zI−,I+,X, respectively. This
gives an acceptable range of disturbances max[ΔI−, ΔX] < Δ <
ΔI+ (and similar for Θ). Thus, when disturbances are in this
range (considering variation to Δ and Θ separately), the
system’s equilibrium lies in a region within which both I <KI and
X < KX are at steady state. This region is illustrated in Figure 2a
where steady-state I andX concentrations are plotted for varying
disturbances; the various limiting values correspond to
intersections between functions (e.g., ΔI−,+ are the Δ values at
which I crosses KI). However, because we have not considered
saturation of p, we have as yet made no guarantee that these
limits can actually be reached prior to controller saturation.
We can constrain the magnitude of disturbances that the

control system can reject without saturating by examining its
performance at limiting values of p. AsΔ,Θ increase, the value of
the product ΔΘp in eq 1f can be maintained by setting an
appropriately small p. However, though the system does not run
out of actuating potential in this case (i.e., we never reach p = 0),
the steady-state error may increase. For the case where Δ, Θ→
0, the value of ΔΘp can only be maintained up to the point
where z = 0, and almost all registers are in their ON position. We
can solve eq 3a−c to find the steady-state value z ̂ whenΔ =Θ =
1, which we then substitute into

f

f

f

f

( / )

( / )

( / )

( / )
X X

r
r X X

X X
r
r X X

2

2

2 1 2

2 1 2
on

off

on

off

β μ δ
β μ δ

β α δ δ
β α δ δ

̂
+ ̂

= ΘΔ
Δ

+ Δ (5a)

Kz
2

1
μ

α
δ

̂ =
+ ̂ (5b)

in which the right-hand side of eq 5a is the saturated signalΔΘp
when z = 0. Solving eq 5a,b for Δ (with Θ = 1) or Θ (when Δ =
1) gives minimal values Δp and Θp, respectively, that the system
could compensate for without saturating, though steady-state
error will again increase as this value is approached.
In Figure 2b,c, we analytically calculate the steady-state

outputs of eq 1a−g (denoted G(Δ,Θ)) over a range ofΔ andΘ
values. The various limiting values of Δ and Θ described
previously are plotted as vertical lines as is the expected output
(G0ΔΘ) that would result without the controller’s action (i.e., if
G expression was independent of p). We observe that the system
is able to reject a disturbance in Δ and operates in the intended
“slack region” for a wide range ofΔ. Rejection of a disturbance to
Θ is even better (i.e., the slope ofG(1,Θ) is closer to 1), and the
slack region extends to much higher values of Θ (the reason for
this is outlined in Supplementary Section 2).

Closed Loop Stability. We can investigate the stability of
the system in eq 1a−g by assuming that at equilibrium (which
lies in mode m0), each individual term in the equation for ṗ is
zero (i.e., Roff, Ron≈ 0). Linearizing about this point (in terms of
D, z, z*, I, and X) gives the Jacobian

p Kz Kz

Kz KzJ

0 0 0 0

0 0

0 0 0

0 0

0 0 0
I I

X

2

1 1

1

1 2 2

2

δ

α δ

δ

β β δ

β δ

=

−

−Θ − − * −

− * − −

Δ Δ −

Δ −

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (6)

which has eigenvalues λ1,2,3 = −δ2 and

K z z, ( )4,5 1 1λ δ δ= − − − + * (7)

, and thus, all system poles (eigenvalues of eq 6) are in the left
half plane, meaning this equilibrium is stable. We can
numerically evaluate the eigenvalues for the complete system’s
Jacobian (i.e., including p in eq 6) about its equilibrium whenΔ
= Θ = 1, which returns (approximately) the same eigenvalues as
above and an additional sixth value of λ6 = −4.4 × 10−6

Figure 2. Steady-state analysis. (a) Steady-state I and X concentrations as a function of Δ (I(Δ) and X(Δ), solid lines, Θ = 1) or Θ (I(Θ) and X(Θ),
dotted lines,Δ = 1). (b) System steady-state output (G(Δ,1)) as a function ofΔwithΘ = 1, compared to its target value (G0, black dashed line) and the
result from an uncontrolled case (G0Δ). Limiting values ofΔ as described in the text are indicated by vertical lines. Control capability quickly declines
for Δ values below the saturation point Δp. (c) Similar to panel (b), but with Δ = 1 and Θ varying. ΘI+ ≈ 500 is not pictured.
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(corresponding to the slower, stable time scale), which is as
expected much smaller than δ2 (previously the eigenvalue of
smallest magnitude).
Dynamic Simulation. In Figure 3, we numerically integrate

the system in eq 1a−g, applying a time-varying disturbance
profile τ(t) (Figure 3a) toΔ (withΘ = 1,G(τ, 1)) and then toΘ
(with Δ = 1, G(1, τ)). Following a step change in τ, the system
rapidly varies p (Figure 3b), which is driven by fluctuating
mRNA concentrations (Figure 3c), which govern expression of I

and X (Figure 3d). We observe that the system is achieving the
intended switching behavior: I and X concentrations spike for
short periods of time, rapidly driving p close to its new
equilibrium, and then remain below KI and KX, respectively. The
system output (Figure 3e) converges close to its preadaptation
level following each disturbance, though this occurs over a
longer time scale, because proteinG is assumed to be stable (δ3 is
small).

Figure 3. Dynamic simulation of disturbance rejecting behavior. (a) Disturbance profile τ substituted for Δ or Θ in subsequent subfigures. (b) The
proportion of plasmids in their ON state (p) varies in response to disturbance in Δ (G(τ, 1)) or Θ (G(1, τ)). (c) The concentration of each mRNA
species and (d) the concentration of I and X for Δ = τ, Θ = 1. Spikes in concentration appear immediately following application of a disturbance,
pushing the production rates of z and z* out of balance. Example points at which the system is in each of its operating modes m0,1,2 are labeled. (e)
System outputG, demonstrating near-perfect rejection of disturbance to eitherΔ orΘ.G0ΔΘ indicates the system’s expected steady-state output if no
control system was in place.

Figure 4. Stochastic simulation of disturbance rejecting behavior. (a) The dependence of our system’s behavior on the copy number of DNA registers
(pT) simulated as described in the text. Other quantities plot parallel those in Figure 2b. (b−d) Similar to Figure 3b−d but for a single stochastic
simulation run and with Θ = 1. In panel b, the total number of ON registers (p̂) is plotted, rather than the ON proportion of total registers (p). (e)
System outputG for a single stochastic simulation (G(τ, 1)) and the average output of 3000 stochastic simulations (G̅(τ, 1)). The target output (mean
steady-state G value when Δ = 1) for the stochastic case (Ĝ0) differs to that for the deterministic case (G0, see Figure 3e) as described in the text.
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Stochastic Simulation. Though in previous sections we
have assumed that p is a continuous variable, in practice, a finite
number of DNA registers will be present within a given cell (e.g.,
one, or perhaps a couple, per plasmid). We investigate the
impact of discretising p by setting

p p pround( )T̂ = × (8)

and then substituting p = p̂/pT in eq 1a−g. Here pT is the copy
number (per cell) of the flippable DNA register, and the round
function returns its argument rounded to the nearest integer.We
solve eq 1a−g with this modification to find the steady-state
value of G as Δ is varied in Figure 4a, observing that as pT is
increased, our system’s output converges to the pT =∞ behavior
(i.e., Figure 2b).
As our system operates in a regime where concentrations of

some system species (namely, z and z*) are low, the
stochasticity of individual biochemical reactions may substan-
tially influence its output. This phenomenon is frequently
described as intrinsic noise,33 as it represents variability
introduced within a given system. In Figure 4b−e, we perform
tau-leaping Gillespie simulations of the system, setting pT = 50
cell−1 and expressing each state variable in terms of integer
copies per cell (rather than concentration). This follows from an
average E. coli cell volume of 0.6 μm3, meaning that a 1 nM
concentration corresponds to approximately 1 molecule per cell.
We observe substantial variability in z and z* concentrations
(Figure 4c), which drives variability in I and X (Figure 4d) and
through that p̂ (Figure 4b) and ultimately G (Figure 4e). In
Figure 4e, we observe that stochastic treatment of this system
increases its mean output level (from G0 to Ĝ0) and (as an
average of many simulations, G̅) degrades the accuracy of
adaptation to changing Δ. This changed behavior arises due to
the time-averaged value of Kzz* in eq 1b,c being reduced in the
stochastic case. This intuitively follows from the fact that
  zz z z z zcov( , )[ *] = [ ] [ *] + * (where  and cov are the
expectation and covariance of a random variable, respectively),
and their covariance will be negative (because of negative
interdependence introduced by −Kzz*), thus reducing the
expected magnitude of the product zz* (for further analysis of
this situation, see refs 7 and 34).

■ DISCUSSION
Our results demonstrate that the proposed switching control
architecture is able to effectively reject a wide range of
disturbances to either translation or transcription rate. Similar
switching controllers are employed in traditional engineering
situations when a controlled variable needs to be maintained
close to a set-point and minimization of energy used for control
actuation is also important.30 For example, refrigeration/heating
systems are often implemented by defining temperature limits
above/below a set-point, outside of which the corresponding
machinery is activated.35 Such implementations can be highly
efficient, because minimal energy is consumed when the
temperature is in the slack region near to its set-point.35

Analogously, for the biological controller outlined herein, the
two DNA flipping operations represent cellular machinery,
which is activated when the system leaves its slack region, and
the consumption of energy (this time in the form of cellular
resources) is minimal within the slack region.
Although Δp, Θp represent minimum disturbance limits that

result in control saturation, the other limits described are solely
constraints on the low-burden slack region, in which the

controller is designed to operate. These can be exceeded without
degrading control capability but come at the expense of
increased protein production (and hence burden) in mode m0.
Tuning of system parameters would allow the system’s set-point
to be placed closer to the middle of this range. AsΔ,Θ grow, the
primary limit on the system’s adaptative ability will thus be that
imposed by the discretization of the DNA register state: p
cannot be made arbitrarily small, and so, large Δ, Θ cause a
stepped response (Figure 4a), particularly when the total
number of DNA registers (pT) is small. Furthermore, regulation
of z by measurement protein species D may lose linearity (and
saturate) for large Δ, Θ, providing an additional upper limit on
disturbance size. The system’s adaptive capability was degraded
when constituent reactions were simulated stochastically; this
phenomenon has been demonstrated to depend upon a system’s
operating parameter regime34 and thus would be a target for
experimental parameter tuning. Our system’s design is intended
tominimize the burden it imposes on a host cell by operating in a
state where I, X (and potentially D) protein concentrations are
small. However, in doing so, trade-offs are being made in terms
of consumption of different cellular resources. For example,
maintaining a large number of DNA registers (pT) within a cell
may also impact growth and other cellular processes.
One challenge posed by experimental implementation of the

proposed control system is the creation of mRNA species z and
z*, which encode genes and also bind to one another. Similar
behaviors have been observed in some natural systems,36 though
are at present beyond the capabilities of commonly used RNA
engineering tools. In Supplementary Section 3, we analyze an
analogous architecture, in which each mRNA is coexpressed
with a repressing sRNA (and thus z and z* do not need to
mutually bind). The design of each mRNA is thereby simplified,
though tuning of sRNA binding strength (demonstrated in a
number of recent synthetic biological studies26,27,37) is required
instead.
Future work will include further stochastic analysis of the

proposed control architecture’s behavior as well as investigation
of its parameter sensitivity. Experimental implementation would
then likely require tuning of system parameters that are
identified as being major determinants of performance, for
example, via ribosome binding site variation or inclusion of
protein degradation tags (i.e., to vary δ2) as was done in past
implementations of integrase/excisionase controllers.24 In the
broader sense, control mechanisms that utilize integrase/
excisionase mediated DNA flipping may present interesting
opportunities for low-burden (though some plasmid replication
is required) dynamic information storage: Although information
stored in the concentration of a protein (or phosphorylation
state of a substrate) is diluted over time, themean state of a DNA
sequence is maintained (because it is copied in its present form).
Future work may thus include development of different control
schemes based upon the fundamental philosophy described
herein, eventually leading to low-burden adaptive controllers
with a diversity of synthetic biological applicatons.3
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