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ABSTRACT: The measurement of noise is critical when assessing
the design and function of synthetic biological systems. Cell-to-cell
variability can be quantified experimentally using single-cell
measurement techniques such as flow cytometry and fluorescent
microscopy. However, these approaches are costly and impractical
for high-throughput parallelized experiments, which are frequently
conducted using plate-reader devices. In this paper we describe
reporter systems that allow estimation of the cell-to-cell variability
in a biological system’s output using only measurements of a cell
culture’s bulk properties. We analyze one potential implementa-
tion of such a system that is based upon a fluorescent protein
FRET reporter pair, finding that with typical parameters from the literature it is able to reliably estimate variability. We also
briefly describe an alternate implementation based upon an activating sRNA circuit. The feasible region of parameter values for
which the reporter system can function is assessed, and the dependence of its performance on both extrinsic and intrinsic noise is
investigated. Experimental realization of these constructs can yield novel reporter systems that allow measurement of a synthetic
gene circuit’s output, as well as the intrapopulation variability of this output, at little added cost.

A major challenge in the design of reliable synthetic
biological systems is assessing and regulating the impact of

variability and noise upon their behavior.1 In a particular
system, noise sources can be broadly classified as arising from
either intrinsic (due to the stochastic nature of the system’s
constituent biochemical processes) or extrinsic (due to
fluctuations in the concentration and behavior of cellular
components with which it interacts) sources.2,3 Extrinsic noise
that impacts the behavior of synthetic circuits can be caused by
both short- and long-term phenomena: It can be introduced by
temporary fluctuations in cellular machinery abundance4 (such
as as ribosome sequestration, which impacts the translation rate
of synthetic circuits,5,6 or uneven distribution of proteins during
cell division7), as well as epigenetic differences in proteome and
cell state that are passed on as cells divide.8−10 Total gene
expression noise is thus a function of both cell-wide
fluctuations, as well as variability in gene-specific regulation.11

In many cases noise can negatively influence the function of
synthetic biological circuits.12,13 Fluctuations in the concen-
tration of individual elements of a synthetic network can
propagate throughout the system, impacting the behavior of
other components.4,14 This has motivated the design and
implementation of synthetic systems that reduce variability,15

for example via inclusion of feedback control architectures.16−18

At the same time, in certain circumstances noise can be
beneficial: In natural systems variability between cells provides
an evolutionary advantage in changing environments,19,20 and
can enhance information transfer in genetic networks.21

Similarly, synthetic systems can be designed that benefit from
the stochasticity of gene expression,22 making this factor

essential in some cases for accurate modeling of their
behavior.23,24

When synthetic biological designs are realized experimen-
tally, assessment of their noise properties and performance
variability is therefore a critical part of their characterization.
Fluorescent reporter proteins are frequently used as an output
for such systems due to the ease with which they are
measured.25 Experiments are often repeated many times
(under theoretically identical conditions) using plate-reader
hardware26 to observe variation in their behavior, which is then
quantified in terms of the variability in a mean experimental
outcome (for example, a cell culture’s bulk fluorescence
output). However, measurement of only a cell culture’s mean
fluorescence can disguise important but often unnoticed
behaviors,27 such as bimodal responses.28 To accurately
characterize many systems, measurement of intrapopulation
cell-to-cell variability is thus required,27 for which techniques
such as fluorescence microscopy and flow cytometry (which
can measure individual fluorescence levels of a large number of
cells) are employed extensively.29 Recently, improvements in
the capabilities of these single-cell measurement technologies
have facilitated high-throughput studies of cell-to-cell varia-
bility.30 However, single-cell measurement techniques remain
time- and equipment-intensive, making their use unfavorable if
large numbers of samples must be measured at regular time
intervals, as is the case when parallelized experiments are used
to test synthetic circuits over a range of input parameter
combinations (often done using a plate reader).
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This experimental challenge motivates the aim of this paper:
to design a synthetic biological reporter circuit that allows
characterization of cell-to-cell variability using only measure-
ments of a cell culture’s mean behavior. Such a reporter could
be used in any synthetic biological system with a fluorescent
protein output to give an estimate of cell-to-cell variability at
little added cost. This would be of great utility for many high-
throughput noise-measurement experiments (which currently
require flow cytometry) as it would allow them to be performed
efficiently and in parallel using a plate-reader device. We
achieve noise estimation via a biological implementation of a
multiplication function that can be used to measure a variable’s
mean value, as well as its mean squared value, at a population
level. It is then possible to estimate the cell-to-cell standard
deviation of a system’s output, which previously required
measurements at a single-cell level. Thus, though our system
does not return the complete shape of the expression
distribution (as does flow cytometry), for cases in which the
distribution mean and width are the primary parameters of
interest (as in many past studies13,15,17,18) it can provide an
efficient experimental alternative.
We begin the paper with a description of the simple statistics

behind this estimation procedure, showing how measurement
of only bulk culture parameters can allow quantification of cell-
to-cell variability. In the case of log-normally distributed
behavior (as is often found in biological systems31), we
demonstrate that this provides a direct estimate of the width of
the system’s output distribution. We then describe a
fluorescent-protein FRET implementation for such a circuit
(an alternate implementation using an activating sRNA circuit
is described in Supplementary Section 2), and discuss expected
parameter values for its operation. The FRET system’s
variance-estimating performance is then analyzed, and its
operational parameter range and sensitivity to both intrinsic
and extrinsic noise is assessed. These results are discussed with
reference to potential experimental conditions in which our
reporter system might be employed, and potential sources for
error (as well as alternate implementations that might minimize
these) are outlined.

■ RESULTS

Noise Distributions and Quantification. We consider a
measurable random biological variable of interest, X, which
might (for example) correspond to the fluorescence output
from a single cell due to production of a fluorescent reporter
protein within that cell. The expectation of X, E[X], is its mean
value over a large number of cells. In this context E[X] would
(approximately) correspond to the total fluorescence of a cell
colony divided by the number of cells of which it is comprised,
hence giving the average fluorescence per cell. Many factors are
not considered in this approximation, such as the attenuation of
emitted fluorescence as it passes through experimental media
(thereby making cells further from a detector device appear
slightly dimmer); however, these secondary effects will be
ignored in our current analysis. The variance of a random
variable X is given by32

= −X E X E XVar[ ] [ ] [ ]2 2 (1)

where E[X2] is the expected (arithmetic mean) value of the
variable X squared, also referred to as the second moment of the
random variable X. In the current context, X2 would correspond
to the squared fluorescence value of a single cell.

Values of X for individual cells will vary within a population,
and when a large number of cells are measured individually (i.e.,
at a single-cell level) the approximate distribution of X can be
ascertained. For many variables of interest in biological systems,
such as the level of mRNA or protein produced, this
distribution is observed to be approximately log-normal during
steady growth33 (though it may be better described by a normal
distribution for cells in stationary phase34). It has been shown
that a log-normal distribution can emerge in such systems due
to the inherent complexity of the noisy biochemical processes
involved.31 A log-normal distribution for a given variable will be
denoted log-normal(μ,σ2), where μ and σ are the mean and
standard deviation respectively of the variable’s natural
logarithm. The nth moment of a log-normal distribution can
be calculated analytically:35

= μ σ+E X e[ ]n n n(1/2) 2 2

(2)

where n is a positive integer. In reality we will not be able to
measure the absolute value of E[X2], but rather a value
“calculated” by our reporter system that is proportional to its
value. We denote the measured second moment Em[X

2] = γm
E[X2], where γm reflects this proportionality and is termed the
second moment gain.
Experimentally, variation between cells in the value of a

parameter X is often quantified in terms of the width of the
distribution when the variable X is plot on a log scale (i.e., the
parameter σ). We can derive an expression for this variable for
the log-normal distribution in terms of measurable quantities,
giving:

σ γ= −
⎛
⎝⎜

⎞
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E X
E X

ln
[ ]
[ ]

ln( )m

m
m

2

2
(3)

where Em[X] is the measured first moment (the mean). The
square-root-log dependence of σ on Em[X

2] is worth noting, as
it means small changes in σ will be measurable as large changes
in Em[X

2]. Even if we do not estimate/measure the parameter
γm, we note that σ is an increasing function of Em[X

2]/Em[X]
2

(when the argument is real), meaning that as the quantity
Em[X

2]/Em[X]
2 grows, so does σ. If the underlying distribution

is not log-normal and/or unknown we can estimate the
population standard deviation using eq 1, though again
estimation of γm is necessary.
Noise strength (fano factor) is a common parameter of

interest when characterizing the variability of biological
systems, and can be used to discriminate between different
mechanisms contributing to noise in protein abundance.36,37

This parameter, defined as the ratio of the expression variance
to its mean is constant for a perfectly poissonian process.38

However, for most biological process (for which a log-normal
distribution is anticipated) the coefficient of variation provides
a better measure of gene-expression noise.37 The (arithmethic)
Coefficient of Variation (CV) is defined as the ratio of the
arithmetic standard-deviation to the mean (SD[X]/E[X] where

=X XSD[ ] Var[ ] ) due to the linear relationship observed
between these parameters.39 We therefore have

σ= − ≈σeCV 1
2

(4)

where the last approximation uses the truncated Taylor-series ex

≈ 1 + x, which is valid for small sigma (σ ≲ 0.8). This
highlights the appropriateness of the coefficient of variation for
assessing noise in biological systems exhibiting log-normal
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behavior: It is proportional to the width of the expression
distribution when plot on a log scale.
We have thus outlined a method for determining the level of

variability in a parameter X, as is often measured via flow
cytometry, but here only using measurements of bulk
parameters. To build an estimator of Em[X

2] we must create
a system with fundamental structure:

+ ⇌X X Y

where we can both measure X, and the variable Y ∝ X2. We
now describe and analyze a possible FRET implementation for
such a variance estimating circuit. A second potential
implementation, based upon an activating sRNA circuit, is
described in Supplementary Section 2.
A Biological Implementation: FRET Reporter Pair. One

approach to measuring a variable X in terms of its mean
(Em[X]) and second moment (Em[X

2]) is to use a dimerizing
FP-FRET (Fluorescent Protein−Fluorescence Resonance En-
ergy Transfer) protein pair that can approximate a multi-
plication function (Figure 1a). In this case we have chosen the
mClover3 (C) and mRuby3 (R) fluorescent proteins,40 but
many other possibilities exist.41 Both fluorescent fusion
proteins are expressed in tandem from the promoter Px, for
which we aim to measure the variability in transcription. This
variability may arise from any upstream processes (e.g., gene
regulatory networks) interacting with Px.
When spatially separated, the fluorescent proteins have their

usual excitation/emission behavior. However, when they are
brought into close proximity (∼10 nm or less41) it is possible to
excite the complex at the lower excitation wavelength of
mClover3 (termed the donor), and measure a change in
fluorescence in the emission spectrum of mRuby3 (the
acceptor). This occurs via nonradiative energy transfer through
long-range dipole to dipole interactions when the fluorophores
are proximal.42 A diversity of approaches to measuring FRET
exist,41 though we will concentrate on ratiometric measure-
ments of FRET intensity, which may be performed using a
plate reader (or fluorescence microscope or flow cytometer).43

To colocalize the two fluorescent proteins such that FRET
can occur we fuse them to complementary protein binding
domains, as has been done in a number of FRET-based protein
localization studies.44,45 Each fluorescent protein can therefore
exist in isolation, or they can dimerize to form a complex F
(Figure 1a). The binding strength of the complementary
domains represents the major parameter for tuning in our
system, which could initially be investigated experimentally
using a pair with ligand-dependent binding.45,46 Their binding
properties will determine the forward and backward rates (KON
and KOFF) for the reaction:

+ H IooooC R F
K

K

OFF

ON

If we assume the concentrations of both C and R are
proportional to the gene expression variability that we aim to
analyze (the parameter Δ introduced at Px), then this system
provides multiplicative ability when the concentrations of C and
R are greater than F. Following the terminology of the previous
section the concentration (and hence fluorescence) of either
mClover or mRuby is a proxy for the variable X which we aim
to measure, and the concentration of F represents the variable
Y. We can model this system using a system of differential
equations of the form:

λ δ̇ = Δ − − +C C K CR K FC C ON OFF (5a)

λ δ̇ = Δ − − +R R K CR K FR R ON OFF (5b)

δ̇ = − −F K CR K F FFON OFF (5c)

where C, R are the concentrations of the mClover and mRuby
fusion proteins respectively, and F is the concentration of the
bound FRET complex. Δ is the random scaling factor
introduced by Px which we aim to measure, λC,R are lumped
transcription/translation rates (we model these in a single step
for simplicity), and δC,R,F are degradation rates for the
corresponding species. By setting the time derivatives to zero
it is possible to solve the system of eqs 5 analytically to find the
steady-state (ss) concentrations of each complex, giving:

λ δ
δ

=
Δ −

C R
F

, C R F

C R
ss ss

, ss

, (6)

and

Figure 1. A FRET Reporter system for analysis of gene expression
variability. (a) Structure of the system, in which the concentration of a
FRET-active dimer (F) is approximately proportional to the square of
the concentration of its unbound components C and R. C and R each
consist of a fusion of a fluorescent protein (mClover3 and mRuby3
respectively) with a protein binding domain (brown). Dashed arrows
represent reactions and their directions (with rate parameters as
defined in the text), and degradation/dilution reactions (δ) represent
removal of species to the null state ⌀. The DNA operon (top) consists
of a promoter (Px), Ribosome Binding Sites (RBS, dark-green), genes
(labeled), and a transcriptional terminator. (b) The dependence of the
ratio Fss/Css (as defined by eqs 6 and 7) on the value of Δ. Colors
denote different values of KON in units of s−1. For an ideal
multiplication operation Fss/Css would be linear in Δ, which is best
satisfied for small values of KON.
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= + Δ − Δ + Δ +F a b c d bc b( ( 2 ) )ss
2 2 0.5

(7)

where:

δ=a K1/(2 )FON
2

(8a)

δ δ δ= +b K( )C R FOFF (8b)

δ λ λ= +c K ( )F C RON (8c)

δ λ λ= −d K ( )F C RON
2 2 2

(8d)

For an ideal multiplication operation to occur, we aim to
tune system parameters such that Fss ∝ Δ2, which would then
mean (approximately) that Fss ∝ Css

2 ,Rss
2 . Observing that the

constant term (Fss|Δ=0) and first derivative ( |∂
∂Δ Δ=
F

0
ss ) are zero, to

achieve Fss ∝ Δ2 we thus desire:

∂
∂Δ

= −
Δ + Δ +

∼
F ab c d

d bc b
( )

( 2 )
Constant

2
ss
2

2 2

2 2 1.5
(9)

for all Δ. This criteria is best satisfied if b is large and c and d are
small. Here b can be made large by setting the protein
degradation terms to be fast (i.e., δC,R,F are large). However,
tuning these parameters can be challenging (and may introduce
noise): A more effective approach is to focus on c and d which
can be made small by reducing KON (and in the case of d setting
λC = λR). KON is the rate at which the fusion proteins C and R
dimerize, which can be reduced by making the binding of their
attached protein domains weak. By minimizing Fss this
constraint also achieves C,R ∝ Δ in eq 6. This follows from
an intuitive analysis of the opposite scenario, in which a large
Fss means most protein is in its dimerized form, and thus Fss will
be proportional to whichever of Css or Rss is smaller.
These results can be rearranged to give:

δ
λ λ δ

δ
=

+
·
Δ − +

F
K C

K
C( )

F

R C C

R
ss

ON ss

OFF

ss

(10)

which if λR = λC and δR = δC (i.e., both fusion proteins are
expressed and degraded at equal rates), simplifies to

δ
γ=

+
≈F

K
K

C C
F

mss
ON

OFF
ss
2

ss
2

(11)

giving a straightforward estimate of γm for our simulated system.
In the case where δF ≪ KOFF we have γm ≈ 1/Kd, where Kd =
KOFF/KON is the dissociation constant of the dimerization
process.
Parameter Selection. We express all parameters values in

terms of molecules per cell to aid stochastic simulations:
Assuming a cell volume of 0.6 μm3 a 1 nM concentration
corresponds to approximately 1 molecule per cell. The lumped
transcription/translation rates (λC,R) can be expressed as a
product of the constituent processes, λC,R = αmβC,R/δm, where
αm is the transcription rate of the (common) mRNA, βC,R are
the translation rates of the two fusion proteins, and δm is the
mRNA degradation rate. We set the transcription rate from the
promoter as αm = 0.05 s−1 to correspond with typical levels
from a midstrength promoter in E. coli,47,48 and the translation
initiation rates are set as βC,R = 0.05 s−1 mRNA−1 as is measured
for midstrength RBSs.47,49 The mRNA degradation rate is set as
δm = 4.1 × 10−3 s−1 to represent a typical mRNA half-life of 2.8
min for E. coli growing in exponential phase.50 Combining these
parameters we have λC,R = 0.61 s−1. The protein degradation

rate is set as δC,R,F = 3.9 × 10−4 s−1 to correspond to dilution
during growth with a 30 min doubling time.48 These parameter
values give a typical equilibrium protein abundance of λC,R/
δC,R,F ∼ 1500 × Δ cell−1, and correspond closely to those
assumed in other studies of noise in E. coli.51

As described in the previous section, the values of KON and
KOFF are the most important tuning dial for achieving the
system’s desired multiplicative behavior. Generally the dimeri-
zation time scales observed in FP-FRET experiments are
substantially faster than cellular processes that they aim to
measure, such as phosphorylation.52 We therefore set KOFF = 1
s−1 so that our system reflects the typical fast response times of
∼10 s for FRET dimerization.53 To guide our selection of KON
values we consider a typical dissociation constant for protein−
protein binding in a FP-FRET system, Kd = 4.4 μM.52 This
value is very similar to that measured for the same protein
binding domains when they are not fused to fluorescent
markers,52 which (assuming this consistency transfers to other
systems) would simplify the task of selecting appropriate
binding domains from the literature to implement our system.
Using these values for KOFF and Kd (and converting to units of
molecules per cell) we have KON = 2.4 × 10−4 s−1, which will be
used to guide the range of KON values investigated. For typical
experiments in which our variability reporter might be
employed17,54,55 we find values of σ in the range 0.5−1.5,
though we will focus analysis on the lower end of this range (as
this is where disruption of our system’s performance by noise
and parameter variation will be greatest).
An important consideration in the FRET implementation’s

design is that its output remains measurable: If very small KON
values are chosen (to best approximate a multiplication
function), it may be challenging to measure the small amount
of FRET signal against a high level of background fluorescent
proteins that are not undergoing FRET.56 In an in vitro study
Gao et al. found that the FRET ratio was measurable with very
high signal-to-noise for monomers at a concentration of ∼1 μM
which (for their measured dimersiation Kd) corresponded to
∼15% of the proteins being in their FRET-active dimerized
state.52 Further, Potzkei et al. demonstrated that accurate FRET
measurements are possible in living E. coli when only a small
fraction of a sensor was in its FRET-active state.57 Due to
overlap of fluorescent protein spectra, measurements include
excitation and emission cross-talk which is exhibted as a
baseline fluorescence level in the emission band of the acceptor
fluorescent protein. Hoppe et al. demonstrated one approach
that uses measured fluorescence values to calculate the relative
concentrations of monomers and a FRET-active dimer in the
presence of this cross-talk58 (and a range of other methods
exist56). Furthermore, they demonstrated that FRET signals are
distinguishable even when the concentration of the FRET-
active dimer is <5% of that of one of its constituent
components.58 Therefore, in the following sections we analyze
our circuit’s behavior in terms of the relative concentrations of
its components (Em[F], Em[C]), assuming that these can be
inferred from accurate measurements of fluorescence (enabled
by characterization of the particular FRET pair’s excitation/
emission interaction41,58).

Deterministic Analysis. In this section we analyze the
system’s steady-state output (given by eqs 6 and 7) using the
parameter values discussed above, and with the value of KON
varying between simulations. A similar analysis is performed for
the alternate activating sRNA implementation in Supplemen-
tary Section 2. In Figure 1b the ratio Fss/Css is plot for varying
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KON; for ideal multiplicative behavior we desire a linear relation,
which is best achieved for low values of KON. As discussed in
the previous section this parameter’s value represents an
experimental trade-off: Smaller KON values uniformly reduce
the concentration of F (and hence the measured FRET
dynamic range), but mean that the system better approximates
a multiplication function.
We now examine the system’s ability to retrieve parameters

of the underlying probability distribution of Δ when only
measurements of the circuit’s mean outputs (Em[F], Em[C], and
Em[R]) are available. The values for Δ are sampled from a log-
normal distribution (Δ ∈ log-normal(μ,σ2)). We vary the value
of σ, which is proportional to the distribution’s width when plot
on log-scale, and E[Δ], the expected value of Δ when sampled
from this distribution. E[Δ] therefore corresponds to the
distribution’s arithmetic mean, as would be measured using a
plate reader. Figure 2a provides examples of log-normal
distributions with varying parameters: Changing E[Δ] with σ
fixed shifts the distribution’s peak, but maintains its width, while
changing σ with E[Δ] fixed flattens the distribution, and shifts
its peak (since μ = ln(E[Δ]) − σ2/2 depends on both E[Δ] and
σ).
In Figure 2b,c we calculate the system’s mean output over

106 log-normally distributed Δ values, and examine the
experimentally measurable ratio of population means Em[F]/
Em[C]

2 (which appears in eq 3) as distribution parameters
(E[Δ],σ) vary. As E[Δ] varies this ratio would ideally remain
constant if C ∝ Δ and F ∝ Δ2, which is what is observed in
Figure 2b with the best agreement occurring for small KON. In
Figure 2c this ratio is plot for varying σ, demonstrating the
system’s sensitivity to increasing variability in Δ. At this point
we have not assumed any fundamental properties of the log-

normal distribution (though it has been used to generate
random samples), and as such the ratio Em[F]/Em[C]

2 can be
used to assess relative changes in noise (the variability of Δ) in
a given system, even if the noise distribution deviates from log-
normal (though the shape of the curves in Figure 2b,c may
change). In Figure 2d we have used this measurable ratio (and
the approximation γm = 1/Kd from eq 11) to directly estimate
the parameter σ using eq 3, demonstrating that the best
agreement is found for low KON. In Figure S1 we repeat this
analysis when λC ≠ λR, which gives a similar outcome.
A useful application of our variance-estimating system would

be to identify when biological processes exhibit a bimodal
output, which is obscured by traditional measurements of only
a cell culture’s mean fluorescence.27,38 We therefore analyze our
system’s behavior when Δ is sampled from a sum (Δs) of two
log-normal distributions (Δa and Δb) with equal weighting:

μ σ μ σΔ = Δ + Δ ∼ ‐ + ‐log normal( , ) log normal( , )s a b a a b b
2 2

(12)

Examples of such distributions are plot in Figure 2e, where we
have set σa = σb and we define μb such that E[Δb] = ϵE[Δa]. In
a standard plate-reader fluorescence measurement a decrease in
ϵ (i.e., the distribution becoming increasingly bimodal) would
appear as a decrease in mean expression (Figure S2), which
does not give clear indication of an increased variation due to
bimodality. However, in Figure 2f bimodality is exhibited as a
substantial increase in the estimated value of σ, though our
system’s ability to estimate the “true” value for σ deteriorates as
the underlying distribution deviates from unimodal log-normal.
Though bimodality substantially shifts the estimated σ, it is not
distinguishable from the case in which there is a very wide
unimodal distribution with equal σ.

Figure 2. Deterministic Analysis of FRET reporter system. (a) Log-normal distributions for varying E[Δ] and σ. (b) Normalized (by value at E[Δ] =
0.1) value of the system output Em[F]/Em[C]

2 (which is calculated as an average of system output for 106 values of log-normally distributed Δ) as the
distribution’s mean (E[Δ]) is varied for a fixed value of σ. An ideal system would be invariant under changes in E[Δ], which is best achieved for
small KON (colors denote different values of KON in units of s−1 and are maintained in panels c,d). (c) System outputs simulated similarly to panel b,
but with varying σ and fixed E[Δ]. An ideal system would show a strong dependence on σ, making experimental measurement of changes in this
ratio easier, which is best achieved for small KON. (d) Comparison of the value of σ estimated using eq 3 (and the approximation γm = KON/KOFF
from eq 11) with the underlying distribution’s actual value. Best estimation accuracy is achieved for small KON. (e) Bimodal log-normal distributions
described in eq 12 with varying σ and ϵ. (f) Estimated value of σ (solid lines) and “true” value of σ (dashed lines, the coefficient of variation of the
bimodal distribution) for bimodal distributions with KON = 1 × 10−4 s−1. Black dashed line indicates σ(Estimated) = σa,σb.
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Parameter Dependence and Noise Sensitivity. The
extent to which the deterministic behavior of the variance-
estimating system will be achieved in an experimental
realization will depend upon its performance in a noisy cellular
environment. In this section we further analyze the FRET
reporter implementation, demonstrating that its functionality is
maintained under variations in parameter values, and in the
presence of both extrinsic and intrinsic noise.
To assess the range of gene expression levels over which a

system with a given KON value can operate we calculated the
accuracy of σ estimation as E[Δ] varied over 2 orders of
magnitude (Figure 3a). This range corresponds to mean
protein abundances per cell varying between approximately 150
and 15 000 (see Parameter Selection section). Estimation
accuracy declines (approximately) proportionally to log(E[Δ]),
with the trade-off between accuracy and measurability (i.e., the
FRET signal being large compared to the background
fluorescence) being governed by KON. Thus, by decreasing
this value variance estimation will be more accurate at high
protein abundances (high E[Δ]), but it will be increasingly
challenging to measure the FRET signal when protein
abundance is low.
Figure 3b compares estimated values of σ as the parameter γm

used in eq 3 varies. In practice a calibration experiment would
be performed using flow-cytometry and a plate reader to give
simultaneous measurements of σ, Em[F], and Em[C] from which
γm can be estimated using eq 3. The value of γm would then
(ideally) carry over when different upstream circuits (i.e., inputs
at Px) are connected to the FRET reporter system. In Figure 3b
we simulate such a calibration experiment to estimate γm* when
σ = 0.5 (and hence for γm* we have σ(Estimated) = σ(Actual) at

this point). We observe that even when this parameter is over-
or underestimated, it does not have a major impact on the
estimated value of σ over the range σ = 0.5−1.5.
When system parameters are varied individually, we observe

that for a given change in parameter value a similar magnitude
of variation is observed in the quantity Em[F]/Em[C]

2 (Figure
S3). In practice isolated parameter variation is unlikely: It
would require a coordinated shift in the mean value of a single
parameter (independently of all others) across all cells in a
population. More likely are consistent shifts across a group of
parameters;51 for example, λC and λR might decrease by a
similar amount (e.g., due to ribosome sequestration), or δC,R,F
might vary together (due to a change in mean cellular growth
rate). In both these cases we find the opposing actions cancel
each other out, returning the system to its previous output
level.
In order to estimate the variability of an upstream process we

ultimately require minimal noise to be introduced within the
variance-estimating system itself. Since our system’s purpose is
to assess the noise in the upstream regulatory architecture/gene
circuit that interacts with Px, the variability we aim to measure is
that which occurs “upstream” of the point at which tran-
scription is initiated from Px. We are thereby defining factors
such as the varying copy number of the plasmid holding Px
(should our system be implemented on a plasmid) as being
extrinsic to the system’s internally introduced variability. Much
of the variability in output protein levels arising within our
system will be caused by variation at the transcription and
translation steps.31 We can model noise introduced due to
extrinsic sources during this process by defining a new
parameter Δ*:

Figure 3. Parameter sensitivity and noise analysis with KON = 1 × 10−4 s−1. (a) Accuracy of σ estimation over an experimentally relevant range of σ
and E[Δ] values. The area above the dashed red line indicates the parameter regime in which the concentration of the FRET-active complex F is less
than 5% of C. (b) Dependence of calculated σ upon the estimated value of γm* at σ = 0.5. (c) Estimated values of σ when system parameters are
sampled from a normal distribution. Note that we scale each of δC,R,F by the same randomly sampled value, since each is (predominantly) determined
by the shared factor of cellular growth rate. (d) Comparison of estimated values of σ for the deterministic steady state solution (e.g., eqs 6 and 7) and
stochastic simulations (described in Supplementary Section 1).
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Δ* = Δ × Δ2 (13)

where Δ is the variability at Px as defined previously, and Δ2 is
the noise introduced during the gene expression process within
our variance-estimating system itself. Due to the large number
of secondary biological factors that combine to determine the
rate of transcription and translation we anticipate that Δ2 will
also be distributed log-normally,31 and we denote its underlying
parameters μ2 and σ2. Because Δ* is the product of two log-
normal distributions it will be similarly distributed, with
parameters μ* = μ + μ2 and σ*

2 = σ2 + σ2
2 + 2σσ2ρ, where ρ

is the correlation between the random variables Δ and Δ2. For

uncorrelated noise (ρ = 0), σ σ σ σ* = +1 /2
2 2 , and thus the

influence of a fixed σ2 decreases rapidly as σ grows. For
perfectly correlated parameters (ρ = 1) we have σ* = σ + σ2
which represents the “worst case” scenario: For any |ρ| < 1 we
have an estimation error of |σ* − σ| < |σ2|.
Past studies have considered extrinisic noise to be the

component of total noise that is correlated between expression
of different proteins within a cell2 (implying a value ρ = 1).
However, with parameter Δ2 we aim to model variability arising
due to sources that are external to our circuit’s stochastic
biochemical reactions, but which may differ between the
expression of the different proteins in our system.31 For
example, differing coding sequences for the two fusion proteins
would mean that the (extrinsic) variability in the concentration
of charged tRNA species may impact their translation rates to
different degrees. Thus, we expect a large (though not unity)
value for ρ, since most of this noise arises due to shared
parameters determining rates of transcription and translation.31

That aside, we proceed with the worst case scenario in which
the variability estimated by our system (σ* measured from Δ*)
differs from the “true” variability (σ from the random parameter
Δ) by an amount σ2 due to the impact of extrinsic noise on the
variance-estimating system itself.
The important consideration in this case is therefore the

difference between σ2 and σ. We can estimate this from past
studies, in which extrinsic noise (measured by CV, which by eq
4 is approximately equal to σ in the low σ region) was observed
to increase by a factor of ∼5 when a previously constitutively
expressed fluorescence marker was put under the control of the
inducible LacI transcription factor.2 Therefore, considering that
circuits that are substantially more complex and noisy than a
LacI inducible promoter might generally be analyzed by our
proposed variance estimating system, extrinsic noise is only
likely to have a minor influence on its estimating capability.
Furthermore, by replacing the promoter Px with a constitutive
promoter known to provide low-noise transcription it may be
possible to estimate σ2 (though this parameter would show
some level of context-dependence), and directly subtract its
value from the measured σ* to find σ.
Although the transcription and translation processes are

likely to be a more substantial source of noise, we also analyzed
the impact of extrinsic variability in δC,R,V and KON,OFF by
sampling each of these values from a normal distribution (with
relatively large standard deviation) and averaging the system’s
performance over a large number of trials (Figure 3c). We
observe that the influence of parameter noise decreases as the
level of variability that we are attempting to measure grows,
because in this case it is not correlated with variability in Δ.
When biomolecular systems operate at low concentration

scales the fact that interactions occur in discrete increments
may substantially alter a system’s behavior.59 To examine the

influence of intrinsic noise introduced by stochasticity in our
system we developed a stochastic model of its behavior,
described fully in Supplementary Section 1. We separate the
bulk transcription/translation process (characterized by rates
λC,R) considered in the analytical analysis of our system into its
individual steps, in order to explicitly simulate mRNA
concentration dynamics. We anticipate large fluctuations in
mRNA concentration due to its lower abundance, whereas for
the higher concentration proteins the stochastic model results
should converge toward the equilibrium levels predicted by
analytical analysis of the differential equations.59 The stochastic
model was simulated for 105 trials over a range of values for σ.
The estimated value of σ in the presence of stochasticity is plot
in Figure 3d and compared to that achieved by the analytical
solution: We observe that the impact of intrinsic noise
decreases rapidly as σ grows, which is anticipated since the
influence of stochasticity within our system is not correlated
with the variability in Δ. Examples of the results from
individiual stochastic simulations are presented in Figures
S4−S8, illustrating how the influence of stochastic noise on the
probability distribution of each species’ abundance decreases as
σ grows.

■ DISCUSSION
We have demonstrated that a biological reporter system which
returns a variable’s mean value (X), as well as an output
proportional to this value squared (Y ∝ X2), can provide an
estimation of cell-to-cell variability from only bulk measure-
ments of a cell culture’s fluorescence. Though this does not
return a complete distribution of reporter expression levels, for
experiments in which distribution mean and width are of
primary interest our system can eliminate the need for
expensive and time-consiming single-cell measurements. It
thereby prevents important behavioral properties (such as
increased variability introduced by bimodality) from being
obscured as they are by traditional mean-only measure-
ments.27,38 One potential implementation for such a system
was described, based upon a FP-FRET reporter pair that
reversibly dimerizes to yield a measurable change in
fluorescence. A second potential implementation, based upon
an activating sRNA circuit architecture, is outlined in
Supplementary Section 2. We find that (for typical parameter
values from the literature) the FRET system is able to
accurately estimate the variability of gene expression from a
promoter Px from which transcription is controlled by an
upstream genetic circuit. We find that both intrisic and extrinsic
noise have minimal influence on our system’s functionality,
except for the case in which the level of variability it aims to
measure is very small. There are, however, a number of
constraints that limit its operational range which will now be
discussed.
The region for which accurate σ estimation is achieved is

constrained to roughly 2 orders of magnitude of expression
levels (E[Δ]) from Px (Figure 3a), a dynamic range which is
likely sufficient for analysis of most synthetic biological systems.
This range can be shifted by tuning of KON; reduced KON shifts
the system’s ideal performance range to higher E[Δ] values.
For a given value of KON the feasible range is bounded below by
the limitations of FRET fluorescence measurement sensitivity,
as discussed in the Parameter Selection section. In Figure 3a we
took this bound to be the point at which Em[F] was 5% of
Em[C], though in practice this bound will depend on the
fluorescent protein FRET pair chosen, media conditions (i.e.,
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background fluorescence), and the particular measurement
hardware employed. The upper bound on the system’s
operation is constrained by its departure from true multi-
plicative behavior as E[Δ] grows, which reduces the accuracy of
σ estimation. The difference between the estimated and actual
value of σ (as observed in Figures 2d and 3 could be
substantially reduced by performing calibration experiments
over a range of σ values so that a more accurate expression
linking σ, Em[F], and Em[C] could be derived and fit to this
particular implementation; this would avoid the assumption
that the system attains perfectly multiplicative behavior in its
output Em[F] ∝ Em[C]

2 as is made implicitly when using eq 3.
Direct measurement of σ (which approximates CV when σ ≲

0.8) requires the underlying distribution to be approximately
log-normal, as is found ubiquitously in intracellular reaction
dynamics.39 This distribution arises due to the large number of
noise sources which are applied multiplicatively to determine
the outcome of biological processes, and thus only when one
particular (non log-normal) noise source dominates a system’s
output is departure from log-normal behavior anticipated.31 We
investigated this possibility for the case of bimodality (Figures
2e,f), demonstrating that though our design was not able to
directly estimate the coefficient of variation for the bimodal
system, it was able to effectively rank them (i.e., gave higher
outputs for distributions with greater variation). This highlights
the usefulness of the measured parameter Em[F]/Em[C]

2, which
increases in the presence of noise (even when not log-normal
distributed) and allows the relative variability of two systems to
be compared (if not estimated absolutely) without knowledge
of the parameter γm.
In Figure 2d γm was estimated using the approximation in eq

11, which holds for λC = λR. This equality is not necessary for
our system to function (Figure S1), though it could be achieved
in practice: Both proteins are expressed from the same mRNA
and are highly stable (so have approximately equal δC,R, these
being primarily due to dilution), and so their relative levels
could be tuned by adjusting their RBSs (the RBS for C would
likely need to be slightly stronger than that for R to account for
transcriptional read-through of R). Regardless of whether λC ≈
λR is achieved, γm can be measured with flow cytometry and a
plate-reader experiment, from which measured σ and mean
fluorescence levels can be used to calculate its value using eq 3
(this process is simulated in Figure 3b). Alternatively, if the
approximation in eq 11 is satisfied then γm could be measured
by expressing one fluorescent reporter from an indicuble
promoter and performing a titration experiment to determine
Kd. Because γm is defined by parameters of the FRET reporter
system itself, its value should remain fixed when different
circuits are placed upstream of Px, unless these were to actively
interfere with the reporter binding processes (changing KON
and KOFF).
Stochastic simulation of our system demonstrated that its

sensitivity to intrinsic noise is generally small, as anticipated for
biological systems where concentrations of interacting
components are large.51 The influence of extrinsic noise was
found to have substantial impact only when the variability
introduced by Px is of approximately the same level as that
introduced within our system. Since our system expresses stable
proteins, and noise introduced by transcriptional regulation of
Px is not considered as occurring “within” the system (this is
included in the parameter Δ which we aim to measure), it
represents what are the least noisy gene expression conditions
obtainable without feedback.2 On the basis of similar systems2

we would anticipate the system’s total internal noise level to be
σ ≈ 0.1−0.2, which is largely determined by transcriptional
bursting.60 The constraint (that a typical upstream regulatory
system contributes significantly more noise than the expression
of fluorescent reporters) is satisfied for many biological
systems: Elowitz et al.2 found that introducing an inducible
transcription factor upstream of a fluorescent reporter increased
extrinsic noise by a factor of ∼5. Furthermore, studies of
synthetic biological circuits for which our reporter might be
employed17,54,55 typically yield values of σ in the range 0.5−1.5,
which coincides with the range considered in our simulations
(Figure 3a,b), and is above the σ levels at which intrinsic or
extrinsic variability were found to impact our circuit (Figures
3c,d). We thus conclude that our reporter system’s functionality
will be minimally disturbed by noise, with the exception of the
case in which it is used to study a feedback regulatory system
that is able to reduce variability of its output (i.e., whatever
interacts with Px) to below the variability internal to our system.
As is the case for all synthetic biological systems, a range of

secondary factors could disturb the behavior of this (or any
similar) variance estimating system. The dynamic range of the
FRET complex is dependent upon the protein binding domains
chosen and the linkers to their fluorescent markers,41 and can
be improved by utilizing “sticky” fluorescent protein FRET
pairs.61 For a stable cell-wide equilibrium (dependent on KON
and KOFF) to develop between proteins in their unbound (C,R)
and FRET-active bound (F) state, it is important that each is
well mixed through the cell. This could be violated if reporter
proteins displayed a strong tendency to form inclusion bodies,
or to be localized near a single transcription site62 (though this
would be unlikely if the system was introduced on a multicopy
plasmid). Transient interference with our reporter system by
other cellular processes could also degrade its behavior (for
example, if the protein−protein binding domain used on C and
R bound strongly to a native protein). Similarly, particular
parameter values could be peturbed by changes in context (for
example KON impacted by internal cellular crowding, or the
efficiency of FRET emission varying with PH58), though such
context-dependencies are challenges for all synthetic biological
systems.63

It is possible and likely that alternate implementations could
be designed that are simpler, and provide better performance,
than those proposed in this study. To estimate the variability of
the parameter Δ the only fixed design requirement is that a
system has states X and Y ∝ X2, both of which are measurable.
Recently “sticky” FRET pairs have been engineered by
introducing weak hydrophobic interactions between the
fluorescent proteins, thereby ensuring their proximity (hence
boosting FRET efficiency) when they are brought together by
the process that they aim to measure.61 Similar protein
engineering techniques could potentialy be undertaken to
further increase dimerization affinity (but avoid homodimeriza-
tion), thereby eliminating the need for inclusion of protein
binding domains. If variance estimation could be achieved using
a single protein, then the noise introduced within the system
would be reduced even further. Such a system could be
conceivably built using a fluorescent reporter (X) that could
form a homodimer, with the dimerized state (Y) being
distinguishable via bulk measurement (for example, using
homo-FRET64,65) from the monomeric state. Zhao et al.
developed such a system, in which homodimerization of a
cpYFP construct results in a change in its excitation spectrum.66
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■ CONCLUSION
Mean-only measurements of biological systems frequently
obscure complex behaviors, making single-cell measurements
of variability critical to their accurate characterization. In this
paper we have demonstrated that it is possible to estimate both
the mean and cell-to-cell variability of a biological system’s
output using only measurements of a cell culture’s bulk
fluorescence. This is achieved by designing synthetic biological
systems with measurable outputs that are proportional to the
rate of transcription, and to this rate squared. We proposed a
potential fluorescent protein FRET implementation of such a
system, and demonstrated that it achieves this functionality
over experimentally relevant parameter ranges. We analyzed the
impact of both extrinsic and intrinsic noise, finding that they
were only significant if the upstream system being measured
had very low levels of variability. The results in this paper thus
illustrate the feasibility of a variance-estimating reporter system
and, along with consideration of experimental factors, could be
used to guide the in vivo implementation of such a system in
future work.
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Balaźsi, G. (2009) Negative autoregulation linearizes the dose-
response and suppresses the heterogeneity of gene expression. Proc.
Natl. Acad. Sci. U. S. A. 106, 5123−8.
(17) Folliard, T., Steel, H., Prescott, T. P., Wadhams, G., Rothschild,
L. J., and Papachristodoulou, A. (2017) A synthetic recombinase-based
feedback loop results in robust expression. ACS Synth. Biol. 6, 1663.
(18) Boada, Y., Vignoni, A., and Pico,́ J. (2017) Engineered Control
of Genetic Variability Reveals Interplay among Quorum Sensing,
Feedback Regulation, and Biochemical Noise. ACS Synth. Biol. 6,
1903−1912.
(19) Balazsi, G., Van Oudenaarden, A., and Collins, J. J. (2011) ular
decision making and biological noise: From microbes to mammals.
Cell 144, 910−925.
(20) Macneil, L. T., and Walhout, A. J. M. (2011) Gene regulatory
networks and the role of robustness and stochasticity in the control of
gene expression. Genome Res. 21, 645−657.
(21) Rodrigo, G., and Poyatos, J. F. (2016) Genetic Redundancies
Enhance Information Transfer in Noisy Regulatory Circuits. PLoS
Comput. Biol. 12, 1−20.
(22) Briat, C., Gupta, A., and Khammash, M. (2016) Antithetic
Integral Feedback Ensures Robust Perfect Adaptation in Noisy
Biomolecular Networks. Cell Syst. 2, 15−26.
(23) Tian, T., and Burrage, K. (2006) Stochastic models for
regulatory networks of the genetic toggle switch. Proc. Natl. Acad. Sci.
U. S. A. 103, 8372−8377.
(24) Politi, N., Pasotti, L., Zucca, S., and Magni, P. (2015) Modelling
the effects of cell-to-cell variability on the output of interconnected
gene networks in bacterial populations. BMC Syst. Biol. 9, S6.
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