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Design Constraints for Biological Systems That
Achieve Adaptation and Disturbance Rejection
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Abstract—Many processes in natural biological systems, such
as chemotaxis in bacteria and osmoregulation in yeast, rely on
control architectures fundamentally equivalent to commonly used
motifs from electrical and control engineering. However, difficul-
ties arise when designing and implementing these architectures in
a biological context due to uncertainties inherent in the behav-
ior of biological systems and physical limitations of the available
parts. In this paper, we discuss recent developments in the study
of biological control systems, which are increasingly necessary for
realization of complex synthetic biological constructs, focusing on
methods for their design and implementation. We establish a range
of desirable properties that ease implementation of biological con-
structs and apply classical control theory to derive a set of con-
straints to aid the design of systems that achieve adaptation or
disturbance rejection. We demonstrate how these constraints can
be used in practice, first deriving the necessary structure for a lin-
ear system that achieves adaptation, and then embedding this in a
nonlinear model of biological relevance that could be built in the
laboratory.

Index Terms—Adaptation, biological control, design constraints,
disturbance rejection, feedback control, homeostasis, synthetic
biology.

I. INTRODUCTION

SYNTHETIC biology is an emerging field at the interface of
biology and engineering, which aims to design and build

novel biological systems to solve problems in fields ranging
from biomanufacturing to medicine [1]. Over the past 15 years,
scientists have successfully used synthetic biology to rewire
natural genetic components; however, attaining reliability and
consistency of performance remains challenging [2]. Difficul-
ties arise for reasons including unforeseen dependencies and
interactions between synthetic constructs and native cellular
machinery [3], and the random fluctuations and noise inherent
in cellular processes [4]. In natural systems, it has been observed
that many such challenges are overcome by feedback architec-
tures similar to those commonly used in control engineering
[5], [6]. This has inspired researchers to implement analogous
control systems in biological contexts [7], with these systems
now playing an increasingly important role in the realization of
synthetic biological designs.
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The bacterial chemotaxis system is a model example of a nat-
ural biological control system. In the presence of extracellular
stimuli, it is able to robustly (that is, with minimal sensitivity
to the properties of its constituent components [8]) return its
state to prestimulus levels [9], a process known as adaptation.
It has been demonstrated that the chemotaxis system’s underly-
ing structure relies on integral feedback control [5], which has
encouraged the use of feedback for development of synthetic
signaling pathways that perform similar functions [10], [11]. In
addition to adaptation, feedback control architectures can pro-
vide a range of favorable capabilities for synthetic biological
networks [12]. For example, in the simple form of negative au-
toregulation, feedback can improve the response time of gene
networks [13] and reduce heterogeneity of gene expression be-
tween cells [14]. Feedback can also be exploited to implement
high dynamic-range gene circuits for computation [15] and to
improve the efficacy of gene regulatory systems [16]. Networks
that utilize feedback control to improve both performance and
robustness will be of increasing interest to synthetic biologists
as they attempt to move synthetic constructs outside the labo-
ratory [6], where varying and nonideal conditions can impact
their performance [17].

Though the widespread need for synthetic biological control
systems has been recognized [7] and many architectures have
been proposed, their implementation remains challenging [18].
This stems from a lack of systematic approaches to design, as
well as methods for optimal (or even feasible) implementation
[19]. To this end, it has been recognized that constraint sets
must be developed to limit the space of viable designs [20]. Past
work has established such constraints for systems with prop-
erties such as switch-like responses [21], disturbance rejection
(homeostasis) [22], and adaptation [18]. This has been done us-
ing a range of techniques including BDC decomposition, which
decomposes system Jacobians into a product of three matrices
B, D, and C that capture the system structure. Such approaches
can be used to determine structural dependencies of variables
upon one another [23] (an approach originally popularized in the
determination of ecological community matrices [24], [25]) and
to reveal adaptive and oscillatory behaviors [26]. State-space
approaches have been used in both linear [27] and nonlinear
[28] systems to provide necessary conditions for adaptation.
Furthermore, “cofactor conditions,” which require systems to
have attractive steady-state functions for which changes in the
input do not affect the output, have been employed to determine
design principles for construction of homeostatic systems [29].
However, even though these constraints can substantially narrow
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feasible design spaces, they are often mathematically abstract
and do not address many of the physical challenges posed by
biological components that make the implementation of control
structures of any substantial complexity challenging [18].

Therefore, as planned control architectures become more
complex, it will be increasingly advantageous to develop biolog-
ical constructs that approximate the fundamental components
of traditional control systems, such as integration, gain, and
summation junctions [15], [30]. This will facilitate implemen-
tation of standard control structures such as lead-lag [19] and
poportional-integral-derivative variant [31] controllers, whose
favorable properties have led to their ubiquity across engineer-
ing disciplines [6].

Prior attempts to develop modularity for biological compo-
nents have focused on the standardization of synthetic biological
“parts” (for example, via the BioBrick standard [32]) to allow
ease and predictability of assembly. However, as parts libraries
have grown, it has become clear that the effective design of bi-
ological systems requires accounting for the context-dependent
influence that up- and down-stream interactions impart upon a
given component (though tools have been developed to “insu-
late” components from these effects [33]), making true modu-
larity challenging. Thus, substantial experimental fine-tuning is
often required for constructs of any appreciable size, even after
extensive in silico testing and development [2]. One approach to
minimize the laborious fine-tuning process is to pursue designs
that build upon (and potentially rewire) native cellular processes
[34], [35], reducing the network size required to achieve a given
functionality (and providing the secondary benefit of minimiz-
ing the metabolic load that the synthetic system places upon
its host cell [31]). However, approaches that build upon native
cellular systems are still in their infancy, and the limits of their
practicality and applicability are yet unclear.

Though challenges surrounding the modularity and unpre-
dictability of biological systems persist, thanks to fundamen-
tal biological research, there is an ever-increasing assortment
of biological elements that can be used for synthetic designs.
Constructs can be built using systems operating on a range
of molecular biological levels (for example, using DNA [36],
RNA [37], or protein [14]), as well as at varying time-scales
[38]–[40] and species concentrations [31]. However, working
with this disparate assortment of components requires exten-
sive interdisciplinary expertise and can substantially increase
the necessity for experimental troubleshooting and system fine-
tuning. Previous work has developed tools for automating the
component-selection and tuning process for some classes of syn-
thetic constructs [41], though as yet they only provide a narrow
(primarily logic function-related) range of capabilities.

Working toward addressing some of these challenges in im-
plementation, in this paper, we derive design constraints on the
structure of networks that provide two common control capa-
bilities: adaptation and disturbance rejection (homeostasis). We
provide guidelines that can be used to simplify the design and
implementation of systems with these capabilities, which due to
our restrictive constraint set provide a greater level of specificity
than previous work. We take a state-space approach to designing
the linearized control system, to which we apply assumptions to

aid implementation, and then derive constraints on the network
structure and parameters. Some of these results follow from
the internal model principle [42], which in the present context
dictates that should a feedback system adapt to a class of in-
put signals, then it must contain a subsystem able to generate
signals of that class [43]. Our design constraints are narrowed
to consider the biological systems in question, and due to the
restrictive assumption set proposed yield only the most readily
implementable designs. Once an appropriate linear system has
been designed, we demonstrate methods for its embedding in
a nonlinear model of biological relevance. The final stage of
the synthetic biology design process, the selection of particular
biological parts for implementation, is not addressed herein.

In Section II, methods for the modeling of biological sys-
tems are discussed, and the approach taken to linearization of a
general nonlinear system is outlined. Section III describes the
paper’s aim, as well as examples of functional forms for bio-
logical interactions that may be used to implement the systems
described in this work. Section III also outlines two general con-
straints that are used in the rest of the paper to exclude systems
with some difficult-to-implement properties. In Section IV, re-
sults are derived that govern the equilibrium behavior of linear
systems, which are then used in Sections V and VI to derive con-
straints for networks capable of adaptation and rejection of dis-
turbances, respectively. In Section VII, the results of Section V
are employed to derive a linearized network that can adapt to
step-type disturbances. This network is used to design a non-
linear system with these capabilities, which is simulated using
illustrative parameters. Section VIII discusses the assumptions
made in this work and their implications, and concludes the
paper.

II. MODELING BIOLOGICAL CONTROL SYSTEMS

Modeling frameworks for biological systems range from
stochastic/probabilistic to deterministic differential equation
(DE) models [44]. This paper focuses on a subset of the later,
utilizing both linear and nonlinear DEs to describe the dynam-
ics of individual state variables, which may represent individual
species, or larger scale properties, of biological systems. Each
DE will be a (potentially nonlinear) function of the system’s
state variables, as well as any external inputs or disturbances to
the system.

A general first-order nonlinear system describing the dynam-
ics of n state variables x(t) = [x1(t), . . . , xn (t)] ∈ Rn as con-
sidered in this paper takes the form

ẋ(t) = f(x(t),u(t)) (1)

in which ẋ(t) = dx(t)
dt ∈ Rn is a vector containing the time

derivative of each state variable, u(t) ∈ Rn is a vector contain-
ing the time-dependent inputs to the nonlinear system’s state
variables, and f(x(t),u(t)) ∈ Rn contains n general nonlinear
functions of the state variables and inputs.

To simplify analysis, it is often advantageous to examine non-
linear systems in a regime where they can be approximated by
a linear system. The system in (1) can be linearized via a Taylor
series expansion of f(x,u) about one of its equilibrium points
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Fig. 1. Schematic representation of systems that achieve (A) adaptation and
(B) disturbance rejection. For an adaptive system, the long-term behavior of the
output node (xn, green) is independent of a time-dependent signal applied at the
input node (x1 , blue). The output variable of a disturbance-rejecting system (x1,
yellow) is in the long-term independent of a time-dependent input acting upon
the same node. The αxi represent basal expression rates of the system’s state
variables xi , and grey clouds represent a yet undefined network of interactions
between the system’s state variables.

xe ∈ Rn (so f(xe ,0) = 0)), which gives (ignoring higher order
terms)

˙̃x ≈ ∂f
∂x

∣
∣
∣
∣
xe,0

x̃ +
∂f
∂u

∣
∣
∣
∣
xe,0

u (2)

where ∂ f
∂x

∣
∣
xe ,0 ∈ Rn×n is the Jacobian of f evaluated at (xe ,0),

∂ f
∂u

∣
∣
xe ,0 ∈ Rn×n is a matrix of all partial derivatives of f with

respect to elements of u evaluated at (xe ,0), and x̃ = (x − xe)
is the deviation in x from xe .

III. AIM AND PROBLEM OUTLINE

In this paper, we aim to provide constraints for the design of
biological systems of minimal size that achieve adaptation and
disturbance rejection (defined in Fig. 1) for inputs of the form
u(t) = tk−1 , t > 0 (where k = 1 would indicate a step, k = 2 a
ramp, etc.). Rejection of step inputs is necessary in many biolog-
ical systems for rebaselining (for example, in chemotaxis [8]),
and adaptation to higher order inputs (i.e., k ≥ 2) may be use-
ful for distinguishing biological processes that create products
at a constant rate from those that have higher order dynamics.
Furthermore, disturbance rejecting systems can better function
as modular components of larger synthetic circuits since they
can be designed to have outputs that (for example) maintain a
constant concentration while being consumed by downstream
processes. Designing nonlinear systems of biological relevance
that achieve these goals, and are also feasible for implemen-
tation, is challenging. Therefore, we approach this problem by
designing a linear system, which is then used to determine the
form of an appropriate nonlinear system. As such our design ap-
proach considers the linearization process outlined in Section II
in the opposite direction: we first derive the necessary structure

of ∂ f
∂x

∣
∣
xe,0

from a set of constraints, and then attempt to find
a nonlinear biological system as in (1) possessing these linear
dynamics about one of its equilibrium points. For a given linear
system, there will be many feasible forms of f(x,u) depending
on the physical components chosen, and so this choice will be
narrowed down by selection of implementations that are most
biologically tractable.

A. Potential Forms for f(x,u)

Though there is a wide (and growing) range of synthetic parts
from which biological circuits can be built, some commonly
used elements [and their potential mathematical expressions
that could appear in f(x,u) from (1)] are outlined below. In
these equations, we have placed the state variables in square
brackets to indicate that in this case they refer to concentrations.

1) Constant expression: An element of a network for which
the concentration increases at a constant rate α:

d[x]
dt

∝ α. (3)

2) Activated/Repressed expression: An element for which
the creation rate depends on the concentration of a sec-
ondary species [y]. Activation corresponds to the case in
(4) for which large [y] results in increased expression,
while repression removes the factor of [y] from the equa-
tion’s numerator, resulting in a smaller value of d[x]/dt
for large [y]. The Hill coefficient (n) describes the coop-
erativity of the activation/repression process (n = 1 for a
noncooperative process):

d[x]
dt

∝ β[y]n

kn + [y]n
. (4)

3) Degradation/Dilution: Reduction in an element’s concen-
tration due to its degradation over time, or dilution (due
to cell growth), which is proportional (via a factor δ) to
its own concentration:

d[x]
dt

∝ −δ[x]. (5)

4) Michaelis–Menten enzyme kinetics: Reactions in which an
enzyme y is used to increase or decrease the concentration
of a substrate x can be described using the Michaelis–
Menten equation. The rate of this process depends on the
enzyme’s concentration ([y]) and its catalytic rate (kcat):

d[x]
dt

∝ kcat[y][x]
KM + [x]

. (6)

5) Mass action kinetics: Chemical reactions that transform
one group of species into another can be described by
mass action kinetics. For example, for a reaction of the
form

αx + βy → γc (7)

we have that

d[x]
dt

,
d[y]
dt

∝ −k[x]α [y]β . (8)



810 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 2, JUNE 2018

Again, the above-mentioned list of potential forms found in
f(x,u) is by no means exhaustive; it aims to provide exam-
ples of simple mathematical approximations for the biological
systems considered in this work.

B. System Linearization and Assumptions for Implementation

We can express the linearization (2) as a general linear system
of the form

ẋ = Ax + Bu,

y = Cx (9)

where x(t) ∈ Rn represents the system’s state variables and
ẋ(t) their time derivatives (as in Section II). u(t) ∈ Rm is
the system’s input and y(t) ∈ Rp the system output. For
single-input single-output (SISO) systems as considered in
Sections IV–VI, m = p = 1. A,B,C are matrices of appropri-
ate dimensions that define the system, with a structure that will
be constrained in terms of the sign or nullity of their elements.
For practical implementation, the elements of these matrices
will then take values in R defined by the system’s biological
parameters. We focus on SISO systems due to their ease of
analysis in the present context, though approaches to expanding
this framework to incorporate systems in which inputs affect
multiple state variables are discussed in Section VIII.

In the following sections submatrix notation will be as fol-
lows.

1) Ai,j refers to the element in the ith row and jth column
of A.

2) Ai:j,k :l refers to a submatrix of A of size j − i by l − k,
which includes elements from the ith to jth row, and kth
to lth column of A.

To provide biologically tractable designs, we make a range
of assumptions that limit the properties of designed linear sys-
tems. First, we require that A matrices are Hurwitz (stable in
the control theory sense). In order to create systems for which
the structure, rather than particular parameter values, guaran-
tees performance goals are achieved, we make the assumption
of element independence, defined in Assumption 3.2. Due to the
leaky nature of biological systems, particularly at the promoter
level [45], we will constrain the constant term in the DE de-
scribing each species’ time evolution to be non-negative. This
will be referred to as a basal level of production (see Con-
straint 3.3). Furthermore, we wish to avoid systems in which
individual components impact other state variables both posi-
tively and negatively, and thus require that the partial deriva-
tives with respect to x1 , . . . , xi−1 , xi+1 , . . . , xn of the DE gov-
erning the dynamics of xi have the same sign for all x (see
Constraint 3.4).

Definition III.1: We define (and denote as SA ) a system of
constraints on a matrix A ∈ Rn×n to be an n × n array of
functions of elements of A.

For example, we might have that SA
i,j = Aa,b + Ac,dAe,f if

under a given constraint it was required that the element Ai,j be
equal to the combination of other elements, Aa,b + Ac,dAe,f .

Assumption III.2. Element Independence: We say that a ma-
trix A ∈ Rn×n has the property of element independence if, for

a given system of constraints SA , the following holds:

∂SA
i,j

∂Al,m
= 0 (10)

for all Al,m ∈ A subject to l �= i or m �= j.
Element independence can be thought of as a criterion that

eliminates constraint sets that require elements of the system
matrix A to be equal to the sum, product, or any arbitrary non-
trivial function, of other elements of A. This criterion must
be understood within the context of constraints applied to a
matrix’s elements, which impose functional relationships be-
tween different elements (i.e., SA

i,j ) for families of systems that
achieve given design goals. We desire element independence in
biological contexts in order to aid the realization of designed
systems, since tuning parameter relationships for different bio-
logical parts of a system is challenging in many cases. Similar
requirements to element independence have previously been
investigated [46] and are discussed further in Section VIII.

C. Other General Constraints for Implementation

In addition to the mathematical constraints derived above,
there are a number of desirable properties that our designed
system should possess in order to ease its implementation. These
will not be used to prove the results in Sections IV–VI, but are
applied during the design of a specific biological implementation
in Section VII.

Previously, we assumed that in a biological system, each state
variable could have a non-negative basal expression level. If a
given state variable xi is to reach an equilibrium, there must be
a balance between positive and negative rate contributions to its
nonlinear dynamics. Since we assume each state variable will
have a non-negative basal expression rate αxi

, there must be at
least one negative element in each row of A. This requirement
yields the following constraint.

Constraint III.3: Ai,j < 0 for at least one j = 1, . . . , n, for
all i = 1, . . . , n.

To aid implementation, we would like to avoid situations in
which one element of a network has influences of differing signs
on other elements. Either it should have a positive influence
(e.g., a transcriptional activator) or a negative influence (e.g., a
transcriptional repressor), but not both. Thus, the off diagonal
terms in each column of A should all be strictly non-negative or
nonpositive. This requirement yields the following constraint.

Constraint III.4: Either Ai,j ≤ 0 ∀ i = 1, . . . , j − 1, j +
1, . . . , n ∀ j = 1, . . . , n or Ai,j ≥ 0 ∀ i = 1, . . . , j − 1, j +
1, . . . , n ∀ j = 1, . . . , n.

IV. GENERAL LINEARIZED NETWORK STRUCTURE

Proposition IV.1: Consider an SISO system in the form of (9)
with n state variables and in which A is Hurwitz. The following
statements are equivalent.

1) The system rejects inputs of the form u(t) = tk−1 with
k ∈ N+ , i.e., limt→∞ y(t) is constant.
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2)

lim
s→0

det

[

sI − A −B

C/sk−1 0

]

= 0 (11)

where s is the frequency domain (Laplace) parameter,
A ∈ Rn×n , B ∈ Rn×1 , and C ∈ R1×n , and I is the n × n
identity matrix.

Proof: Under the stability assumptions of the proposition,
from the final value theorem [47], we have that

y(∞) = lim
s→0

sY (s). (12)

For this system to be unperturbed (in the t → ∞ limit) by the
input/disturbance u(t), we, thus, require limt→∞ y(t) = 0. For
our system, we can express the transfer function from input to
output in terms of its Rosenbrock system matrix as [48], [49]

G(s) =
1

det(sI − A)
det

[
sI − A −B

C 0

]

(13)

which, taking Y (s) = G(s)U(s) and a general input of the form
u(t) = tk−1 , equivalent to U(s) = (k − 1)!/sk in the Laplace
domain, gives

lim
s→0

(k − 1)!
det(sI − A) × sk−1 det

[
sI − A −B

C 0

]

= 0. (14)

Here, det[ sI−A
C

−B
0 ] will yield a polynomial in s of maximal

order n − 1, while the lowest order s term in det(sI − A) ×
sk−1 will be of order k − 1 and equal to det(−A) × sk−1 . By
placing k − 1 zeros at the origin, this term causes cancelling
of inputs of the form the system aims to reject, as required by
the internal model principle. Thus, since we require this limit
to approach zero, as s → 0, the denominator’s value will be
dominated by its lowest order term, and we can replace the
condition in (14) with one which is equivalent in the s → 0
limit

0 = lim
s→0

(k − 1)!
det(−A) × sk−1 det

[
sI − A −B

C 0

]

. (15)

Condensing the 1/sk−1 prefactor into the bottom row of the
determinant and eliminating constant terms gives the desired
result. �

V. NETWORK CONSTRAINTS FOR ADAPTATION

For a system to achieve adaptation [see Fig. 1(A)], the long-
term behavior of one of its state variables (the output) must be
independent of a time-dependent input applied to a different
state variable (the input). We will arbitrarily define the input
state variable as the first element in the system, and the output
state variable as the last, giving

B =

⎡

⎢
⎢
⎢
⎣

1
0
...
0

⎤

⎥
⎥
⎥
⎦

,C =
[
0 · · · 0 1

]

. (16)

Recall that the relative degree (Dg ) of a system is defined as
the number of times the system’s output (y) must be differen-
tiated before the input (u) appears explicitly in its expression.

Equivalently, it is equal to the difference in the order of the
polynomials (in s) found in the numerator and denominator of
a system’s state-space transfer function (G(s)). Described in a
network context, Dg is the shortest path (in the graph theory
sense) between the system’s input/output state variables. For
a system with relative degree Dg , this path will, thus, include
Dg state variables, two of these being the input and output (1st
and nth state variables, respectively). If we arbitrarily label the
state variables corresponding to the rows of A such that the first
1, . . . , Dg − 1 state variables sequentially form the shortest path
to the output (nth) state variable, then requiring connectivity be-
tween the input and output elements of a network for a given
Dg = 1, . . . , n is equivalent to the following:

An,Dg −1

Dg −1
∏

j=2

Aj,j−1 �= 0,

An,1:Dg −2 = 0. (17)

For example, if Dg = 2, the input state variable connects directly
to the output (An,1 �= 0), or if Dg = 3, the input state variable
connects to the second state variable (A2,1 �= 0), which connects
to the output (An,2 �= 0).

Proposition V.1: Consider a linear system (9) that satisfies
the assumptions of Proposition 4.1, with B,C as in (16). Sup-
pose that for this system, element independence (see Assump-
tion 3.2) of A holds and that there exists a solution to (17) for
some Dg , so that the input and output of the network are con-
nected. If such a system has the minimal number of state vari-
ables (n) and is able to reject an input of the form u(t) = tk−1 ,
then it has the following properties.

1) n = k + 2.
2) Ai,i = 0, and the product Ai,1An,i = 0, for all i =

2, . . . , n − 1.
3) Ai,n �= 0 for at least one i = 2, . . . , n, and A1,j �= 0 for

at least one j = 1, . . . , n − 1.
4) Dg = 2, and thus, An,1 �= 0.
Proof: From (11), this system must satisfy

lim
s→0

det

⎡

⎢
⎢
⎢
⎣

sI − A1:n,1:n

1
0
...

· · · 0 1
sk −1 0

⎤

⎥
⎥
⎥
⎦

= 0. (18)

Using Laplace’s formula, this determinant can be expanded
along the bottom row and up the right column to give

lim
s→0

1
sk−1 × det(Ar ) = 0 (19)

where

Ar =

[

A2:n−1,1 A2:n−1,2:n−1 − sI

An,1 An,2:n−1

]

. (20)

Let λ̃i(s), i = 1, . . . , n − 1 denote the eigenvalues of the matrix
Ar , then for (19) to be satisfied, we require

lim
s→0

1
sk−1

n−1∏

i=1

λ̃i(s) = 0. (21)
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We will now examine two cases, the first where one of λ̃i(s) = 0
when s is arbitrary, and the second where this does not hold,
thus requiring that a term of order sk can be factorized out of
the product of eigenvalues in (21) [so that (19) is satisfied]. We
will rule out the first case due to its inability to satisfy (17) for
any value of Dg , and thus conclude the second case must be
true.

Case 1: If one of λ̃i(s) = 0 when s is arbitrary, then
A2:n,1:n−1 is degenerate. Expanding det(Ar ) along the bot-
tom row and separating out the first term, we have

An,1 × det(A2:n−1,2:n−1 − sI)

+
n−1∑

j=2

(−1)j+1An,jMn,j = 0 (22)

whereMi,j is the standard matrix minor equal to the determinant
of the (n − 2) × (n − 2) matrix that results from removing the
ith row and jth column from Ar . The first term in (22) is the
only one proportional to sn−2 , and therefore, for this expression
to be equal to zero for arbitrary s, we require An,1 = 0, ruling
out the Dg = 2 case of (17).

Expanding det(Ar ) down the left column, the first term is
given by

A2,1 × det

[

A3:n−1,2 A3:n−1,3:n−1 − sI

An,2 An,3:n−1

]

. (23)

Due to the assumption of element independence forA, (23) must
equal zero for all s. As the Dg = 2 case of (17) has already been
excluded, A2,1 �= 0, and so expanding this determinant along
the bottom row requires An,2 = 0, it being the coefficient of the
only sn−3 term. Therefore, the Dg = 3 case of (17) is likewise
excluded. Continuing to expand (23) in a similar manner [for
example, in the next stage expanding the determinant in (23)
about A3,2] rules out all possible values of Dg , thereby proving
case 1 to be impossible.

Case 2: With case 1 excluded, it is necessary that a factor of
sk is shared between the n − 1 eigenvalues in (21) for the limit
to hold. This implies the matrix A2:n,1:n−1 is onefold degen-
erate (that is, it contains one linearly dependent row/column),
which follows from the fact that A is not degenerate. This also
requires that at least one of the values A2,n , . . . ,An,n �= 0,
and one of A1,1 , . . . ,A1,n−1 �= 0, to avoid row- and column-
wise degeneracy of A, respectively, which gives property 3 of
Proposition 5.1.

In order for a factor of sk to appear in the eigenvalues λ̃i , it
is necessary that there are at least k terms including s in Ar .
Since Ar contains n − 2 terms linear in s, we can constrain
the minimal size of the complete network (n) as n = k + 2,
which gives property 1 of Proposition 5.1. If we express the
determinant of Ar as a polynomial in s

βn−2s
n−2 + βn−3s

n−3 + · · · + β1s
1 + β0 . (24)

Then β0 , . . . , βk−1 = 0 in order for an sk term to be factored
out. By breaking down this determinant to calculate coefficients

of the highest order s terms, we find βn−2 = An,1 and

βn−3 =
n−1∑

i=2

Ai,1An,i + An,1

n−1∑

i=2

Ai,i. (25)

Since n = k + 2 the only nonzero term in (24) is the one with
coefficient βk = An,1 , and thus, the network’s input must be
connected to its output (i.e., Dg = 2, yielding property 4 of
Proposition 5.1). The requirement that βk−1 = 0 in (25) dictates
that Ai,i = 0 and Ai,1An,i = 0 for all i = 2, . . . , n − 1, which
gives property 2 of Proposition 5.1. �

From a biological standpoint, the first constraint in property 2
of Proposition 5.1 corresponds to a requirement that each non-
input/output species has a constant rate of degradation/dilution
(i.e., zeroth-order degradation), independent of its concentra-
tion. This requirement, which has previously been established
for perfectly adapting systems [50], can be realized (for exam-
ple) by saturation of proteolysis—forcing the protease responsi-
ble for degradation of a given species to work at saturation [51].
The second constraint in property 2 of Proposition 5.1 means
that a species i (except for the input species) is either directly
influenced by the input node or it directly influences the output
node, but both conditions are never simultaneously true. This
is equivalent to requiring that there are no paths from input to
output that go through precisely one other node. For the minimal
relative degree (Dg = 2), the minimum size of a network that
can reject inputs of order k − 1 can be equivalently calculated
by recalling that rejecting disturbances of the form tk−1 requires
the system’s transfer function to have k zeros at the origin, and
therefore, by the definition of relative degree, the system must
be of minimal order k + 2.

Although the minimally sized network for adaptation to a
given input has Dg = 2 via Proposition 5.1, in some situations,
it may be advantageous to select a larger network in order to
relax some constraints on the constituent component dynamics.
With each increase in Dg , we must include an additional term
in (24), and thus, the minimal size of an adaptive network for a
given Dg is n = Dg + k.

VI. NETWORK CONSTRAINTS FOR DISTURBANCE REJECTION

To formulate a network that can reject a disturbance in one of
its state variables [see Fig. 1(B)], we will consider a system in
which the input and output are (arbitrarily) applied to the first
state variable, giving

B =

⎡

⎢
⎢
⎢
⎣

1
0
...
0

⎤

⎥
⎥
⎥
⎦

,C =
[
1 0 · · · 0

]

. (26)

In a biological sense, such a network would be able to stabi-
lize the concentration of an output species (whose equilibrium
concentration may be a function of inputs elsewhere in the net-
work) as it is being consumed by secondary processes. This
system is, therefore, able to function as a load-driver [3]. Such
systems have been implemented in a synthetic biological context
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in recent years and have been shown to provide much-needed
modularity for the interfacing of biological constructs [33].

Proposition VI.1: Consider a linear system (9) that satisfies
the assumptions of Proposition 4.1, with B,C as in (26). Sup-
pose that for this system, element independence (see Assump-
tion 3.2) of A holds. If such a system has the minimal number
of state variables (n) and is able to reject an input of the form
u(t) = tk−1 , then it has the following properties.

1) n = k + 1.
2) A1,1 < 0, Ai,i = 0 for all i = 2, . . . , n, andAj,iAi,j = 0

for all combinations of i, j = 2, . . . , n.
3) Ai,1 �= 0 and A1,i �= 0 for at least one i = 2, . . . , n.
Proof: Analogously to the process following from (18), it is

necessary that

lim
s→0

1
sk−1 × det(At) = 0 (27)

where

At = [sI − A2:n,2:n ] . (28)

If we express the determinant of At as a polynomial in s, we
get

sn−1 + βn−2s
n−2 + · · · + β1s + β0 = 0. (29)

To satisfy (27), an sk term must be factored out of (29),
which sets a minimal network size of n = k + 1 (property 1 of
Proposition 6.1). Setting n = k + 1 in (29), we have

sk + βk−1s
k−1 + · · · + β1s + β0 = 0 (30)

which requires βk−1 , . . . , β0 = 0 in order to leave sk as the
lowest order term. Since β0 = det(−A2:n,2:n ), we have that
A2:n,2:n is degenerate. However, since A is invertible, A2:n,2:n
has at most one degenerate row/column, and so at least one of
A2,1 , . . . ,An,1 �= 0 and one of A1,2 , . . . ,A1,n �= 0 to avoid
row- and column-wise degeneracy of A, respectively (property
3 of Proposition 6.1). In (30), the term βk−1 is given by

βk−1 = (−1)k−1
k+1∑

i=2

Ai,i (31)

which if βk−1 = 0, given the assumption of element inde-
pendence for A, gives the second part of property 2 in
Proposition 6.1. Biologically, this constraint requires that all
state variables bar the input/output must have zeroth-order
degradation dynamics [50]. Since all eigenvalues of A have
negative real part, Trace(A) < 0, and thus, A1,1 < 0, giving
the first part of property 2 in Proposition 6.1. Since Ai,i = 0 for
i = 2, . . . , n, we have

βk−2 = (−1)k
k+1∑

j=2

k+1∑

i=j+1

Aj,iAi,j (32)

which if βk−2 = 0, given again the assumption of element inde-
pendence for A, constrains every pair of nonoutput state vari-
ables to be joined only by a single link. This gives the final part
of property 2 in Proposition 6.1. �

Considering a nonminimal network with n = k + 2, we still
require sk to be the lowest order term in det(At), which is now

given by

sk+1 + βksk + · · · + β1s + β0 = 0. (33)

The term βk has the same form as in (31), but with the sum
index going to k + 2. This sum can now be nonzero, and thus,
diagonal elements may be nonzero. The next coefficient in (33)
is

βk−1 = (−1)k

⎛

⎝

k+2∑

j=2

k+2∑

i=j+1

Aj,iAi,j +
k+2∑

j=2

k+2∑

i=2,i �=j

Ai,iAj,j

⎞

⎠

(34)
which if n = k + 2 must equal zero. The right-hand sum in (34)
indicates that all pairwise products of diagonal terms are zero.
Since the nonzero βk allowed these to be individually nonzero,
precisely one of the diagonal terms can be nonzero. The left-
hand sum in (34) constrains every pair of nonoutput nodes to be
joined only by a single link, as was the case before.

VII. APPLICATION TO BIOLOGICAL SYSTEM DESIGN

A. Implementation of Parameter Constraints

We now apply the derived constraints to design a synthetic
biological system capable of adapting to a step (k = 1) dis-
turbance. For a minimal realization of this system, following
Proposition 5.1, we require a network of size n = 3, which in
linearized form will be expressed as

A =

⎡

⎣

A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

⎤

⎦ . (35)

From Proposition 5.1, we have A3,1 �= 0 and A2,2 = 0.
Since all eigenvalues of A have negative real part, we know
A1,1 + A3,3 < 0, and so we will set both A1,1 ,A3,3 < 0 to
avoid constraining the relative magnitudes of these parameters
(if one were positive, it would need to be lesser in magnitude
than the other). In doing this, we have also satisfied property
3 of Proposition 5.1. From property 2 of Proposition 5.1, we
have A2,1A3,2 = 0, and will set A3,2 = 0 as this choice allows
us to set A2,1 �= 0 so that there is a nonzero element in the
matrix’s second row. Expanding the determinant of A down its
middle column now gives −A1,2(−|A3,3 |A2,1 − A2,3A3,1),
which must be less than zero for A to be stable (since this deter-
minant is equal to the product of three negative eigenvalues), and
so we set A2,3 = 0 and A1,2A2,1 < 0. At this point, we can set
A1,3 = A2,3 = 0 to simplify the system, since these elements
are not required to satisfy other constraints. By Constraint 3.3,
we then have that A2,1 < 0, and therefore by Constraint 3.4,
A3,1 < 0. Thus, we are left with

A =

⎡

⎣

−|A1,1 | |A1,2 | 0
−|A2,1 | 0 0
−|A3,1 | 0 −|A3,3 |

⎤

⎦ (36)
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which forms part of a single-input multiple-output linear system
as in (9) given by

˙̃x = Ax̃ +

⎡

⎣

ux1 (t)
0
0

⎤

⎦ ,

y = x̃ (37)

where as before x̃ = x − xe , and ux1 (t) is the time-dependent
disturbance to species x1 to which we hope x3 will adapt. We
now seek a nonlinear system that can be approximated near to
an equilibrium by the constrained linear system in (37).

B. Nonlinear System Selection and Correspondence With a
Linear System

To design a nonlinear system [of the form of (1)] that can be
approximated by (37), we begin by selecting biological mech-
anisms to account for each of the elements of (36). There are
many ways in which this can be done depending on the biolog-
ical components selected. We will discuss one such implemen-
tation.

The elements −|A1,1 | and −|A3,3 | can be implemented by
attaching fast degradation tags to x1 and x3 , or by introduc-
ing a protease external to this system, which acts in saturation
upon x2 , giving x2 zeroth-order degradation [50]. The element
|A1,2 | can be provided by having species x2 noncooperatively
activate the expression of species x1 in the regime in which the
concentration of x2 is small compared to the activator binding
equilibrium constant. Elements −|A2,1 | and −|A3,1 | can be
implemented by choosing species x1 to be a protease enzyme
operating in the saturation regime (where enzyme concentration
is small compared to substrate concentration).

Using the standard Hill equation (for noncooperative activa-
tion) and Michaels–Menten equation (for enzyme activity) [52],
the system’s nonlinear dynamics can be expressed as

f(x,u) =

⎡

⎢
⎢
⎢
⎣

αx1 − δx1 [x1 ] + βx 2 [x2 ]/k1

1+[x2 ]/k1
+ ux1 (t)

αx2 − kc a t 1 [x1 ][x2 ]
KM 1 +[x2 ]

αx3 − δx3 [x3 ] − kc a t 2 [x1 ][x3 ]
KM 2 +[x3 ]

⎤

⎥
⎥
⎥
⎦

(38)

where we have placed the state variables in square brackets
to indicate that they represent concentrations. αxi

represent the
basal expression rates of each species, βxi

represent the maximal
rate increase due to activation, and δxi

represent the first-order
degradation rates. KM are Michaelis constants, and the kcat the
corresponding maximal enzyme catalytic rates. The structure of
this system’s Jacobian is given by

∂f
∂x

∣
∣
∣
∣
xe ,0

=

⎡

⎣

∗ ∗ 0
∗ ∗ 0
∗ 0 ∗

⎤

⎦ . (39)

To set A2,2 = 0, we need the activator x2 to operate in the
regime where its concentration is small compared to its binding
equilibrium constant (so that k1 � [x2 ]), making the magnitude
of this partial derivative small. Furthermore, forcing the protease
enzyme x1 to operate in its saturation regime gives KM 1 
 [x2 ]
and KM 2 
 [x3 ]. With these constraints enforced, the Jacobian

Fig. 2. Network diagram for linear system in (37) with parameter values from
the nonlinear approximation in (40). Pointed (blunt) arrows indicate a positive
(negative) effect of one species’ concentration on that of another.

TABLE I
SAMPLE MODEL PARAMETERS (UNITLESS)

Parameter Value Parameter Value

[xe1 ] 2.0 kcat1 1.5
[xe2 ] 2.5 kcat2 1.0
[xe3 ] 1.5 k1 80
αx 1 1.5 KM 1 0.01
αx 2 3.0 KM 2 0.01
αx 3 5.0 δx 1 2.0
βx 2 80 δx 3 2.0

can be approximated by

∂f
∂x

∣
∣
∣
∣
xe ,0

≈
⎡

⎣

−δx1 βx2 /k1 0
−kcat1 0 0
−kcat2 0 −δx3

⎤

⎦ . (40)

We are now able to use (2) to construct a system in the form of
(37) by setting

∂f
∂u

∣
∣
∣
∣
xe ,0

=

⎡

⎣

1 0 0
0 0 0
0 0 0

⎤

⎦ ,
∂f
∂x

∣
∣
∣
∣
xe ,0

= A,

− ∂f
∂x

∣
∣
∣
∣
xe ,0

xe =

⎡

⎣

αx1

αx2

αx2

⎤

⎦.

(41)

C. Parameter Selection and Implementation

With the equivalences in (41) set, the nonlinear system de-
scribed by (38) is approximated by the linear system, as shown
in Fig. 2. To model this system, values for the parameters and
ratios in (40) [which then define the elements of the linear sys-
tem (36)] are selected in order to ease implementation, subject
to two constraints. First, the eigenvalues of this matrix all lie
in the open left half-plane as per Proposition 5.1. Second, there
exists an equilibrium solution to f(xe ,0) = 0 with f as in (38),
with all elements of xe and each αxi

term strictly positive.
Based on the equilibrium concentrations [xe ], the activa-

tion binding constant is selected to satisfy k1 � [xe2 ], and
the Michaelis–Menten constants to satisfy KM 1 
 [xe2 ] and
KM 2 
 [xe3 ]. Values for βx2 and βx3 are then fully defined by
the ratios in (40).

The above-mentioned process was followed to yield an illus-
trative set of satisfactory parameters, summarized in Table I.
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Fig. 3. Comparison of linear (37) and nonlinear (38) realizations of a system
designed such that x3 is able to adapt to step disturbances of x1 . Close agreement
is found between the value of x3 in both models and its desired equilibrium
value xe3 . Model parameters used are presented in Table I. The negative of the
time-dependent input ux 1 (t) is plot as a rate, and state variables (x) are plot as
concentrations. All values in arbitrary units (a.u.).

Using these values, we simulated the linear (37) and nonlinear
(38) systems using MATLAB, for which results are presented in
Fig. 3. With all state variable concentrations [x] initially zero,
designed equilibrium values (see Table I) are quickly reached.
The time-dependent input ux1 (t) applies a negative unit step at
t = 10. Though [x3 ] departs from equilibrium at this discon-
tinuity in ux1 (t), it quickly returns to the desired value [xe3 ],
achieving the system’s design purpose. Agreement between the
linear and nonlinear systems is good, particularly in terms of the
controlled variable x3 , which was found to be robust to varia-
tion of model parameters, though these variations can shift the
system’s equilibrium position. Substantial (e.g., order of magni-
tude) changes in k1 ,KM 1 ,KM 2 can reduce the applicability of
assumptions made when linearizing our nonlinear implementa-
tion. This results in departure between the linear and nonlinear
models, particularly in x2 , with x1 and the controlled variable
x3 affected to a lesser extent. However, since the assumptions
made in the derivation of (40) still loosely hold, the structure
of the system is maintained and so adaptation by x3 is still
achieved.

While the example illustrated in this section demonstrates
the application of constraints to design a minimal system for
step-disturbance rejection, the result is not unique. Rather than
specifying particular parameter values, the constraints outlined
in this paper define the structure of A in terms of the sign (or ex-
istence) of its individual elements. When these constraints (and
the assumptions that underlie them, such as the stability of A)
are satisfied, our results then guarantee that (due to its structural
properties) the linear system is able to reject a given class of in-
puts. After all structural constraints are satisfied, unconstrained
elements of A can then be set based on any other design goals;
in our case, we set any uncertain elements to zero in order to
minimize the number of required interactions within the system

Fig. 4. Simple feedforward network structure, in which an inducer drives the
steady-state concentration of x1. By treating x1 as a direct proxy for the input
to this network, it can be thought of as an input interacting with both x2 and x3 .

(thereby simplifying implementation). For networks that are de-
signed to reject higher order disturbances (k > 2), the structure
imposed by our design constraints will be increasingly sparse,
leaving many more elements undetermined (though generally
setting these to zero to reduce the complexity of the designed
system will be desirable).

VIII. DISCUSSION AND CONCLUSION

The constraints derived in this paper provide a general guide-
line for designing systems capable of adaptation and disturbance
rejection, but do so under a limited set of assumptions which
may, in practice, be violated. For example, the element indepen-
dence requirement (that elements of A be independent of one-
another) was investigated by Drengstig et al. [46], who classified
adaptive networks as robust (those in which perfect adaptation
is a property of the network’s topology) or nonrobust (those in
which fine-tuning of rate constants is necessary to achieve adap-
tation). Our assumptions ruled out all such nonrobust systems;
however, their coarseness also eliminated a number of robust
strategies. For example, the element independence assumption
for A could be violated in practice by reversible reactions such
as

x1
k2�
k1

x2 (42)

which when linearized gives a matrix of the form

A =
[−k1 k2

k1 −k2

]

. (43)

Despite this, we elected to avoid any form of parameter de-
pendence since systems that violate these assumptions (in the
nonrobust case) only function within a limited parameter space,
or (in the robust case) can be challenging to implement. For
example, for reversible reactions as in (42), it may be difficult
to tune the relative rate values k1 and k2 , or to find a biological
component with this property that is also able to interact with
other species in the system as required. Other derived constraints
can also be violated in practice (for example, the λ repressor pro-
tein CI can act as both an activator and repressor [53], violating
Constraint 3.4), but were included since our goal is to limit the
design space to include only the most readily implementable
systems.

The present analysis can be extended to consider systems
of more than one input by careful selection of node identities
and layout. For example, feedforward architectures often found
in natural biological systems [54] (illustrated in Fig. 4) can be
constructed by having the first node (x1) act as a proxy for the
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system input. By enforcing fast dynamics of this node, it can
track the input signal, though it will be subject to consump-
tion/disturbance by downstream processes (as are inputs such
as chemical inducers [55]).

The linearized approach to design described in this paper sim-
plifies the process of defining network structures and guiding
implementation, but does so at the expense of ruling out a class
of nonlinear systems for which the system matrix [as in (40)]
would have nonconstant terms. Such systems can be designed
to adapt to a wide range of signals while requiring fewer com-
ponents than those described by our linear design approach. For
example, an n = 2 dimensional nonlinear system can adapt to
all subexponential inputs (including u(t) = tk for all k) [56],
[57]. However, such systems can be challenging to implement
using biological components [56], and in fact for many applica-
tions, we desire adaptation or disturbance rejection for certain
classes of signals but not others [58]. For example, many natural
systems (including bacterial chemotaxis [59]) utilize negative
feedback architectures that adapt to step inputs, but not to ramps,
in order to sense nutrient gradients in their environment. This
contrasts with other natural regulatory architectures, such as in-
coherent feedforward loops, which adapt to a wider range of
signals in order to reduce a system’s sensitivity on environmen-
tal fluctuations [58].

As with all mathematical descriptions of biological systems,
it is important to note that our approach involves making a range
of approximations, which in reality, depending on circumstance,
may be violated. For example, our seemingly simple assump-
tion that it is possible to build a network in which one species
does not influence another (i.e., there is an off-diagonal zero
in A) may not hold: Limited ribosomal resources mean that if
one gene is translationally activated, this may have a repressive
influence on the translation of others [60]. Deliberate utilization
of these secondary effects may provide design approaches that
could (for example) violate Constraint 3.4. Furthermore, zeroth-
order degradation (zero terms on the diagonal of A) is difficult to
achieve in practice, since there will always be some rate of pro-
tein dilution and passive degradation. Another approximation
arises when linearizing the more biologically relevant nonlinear
system, as this approximation is only applicable within a given
range of parameter values, thus constraining the regime in which
our system can achieve its design specification. Combined, these
and other second-order effects (which are prevalent throughout
biological systems) mean that biological networks can almost
never be perfectly adapting or rejecting of disturbances, though
they can approximate these capabilities [29].

In this paper, we have described a set of constraints that can be
employed to simplify the design and implementation of biolog-
ical networks that achieve adaptation and disturbance rejection.
Using this framework, an engineer can quickly narrow the de-
sign space to a set of viable linear network topologies, which
can then be embedded in a nonlinear system of biological rele-
vance. Though biologically feasible designs are possible outside
of the assumption set we have outlined, our assumptions ensure
that our method provides only the most readily implementable
architectures. These can then be built in the laboratory from
the ever-growing array of components available to synthetic bi-

ologists. In this way, we hope that our work will aid in the
realization of the robust control systems that are increasingly
necessary for the regulation of complex synthetic biological
constructs.
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