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Abstract: Synthetic Biology is an emerging field at the interface of biology and engineering,
concerned with the design and implementation of synthetic biological parts, devices and systems.
With applications ranging from industrial biosynthesis of chemicals to treatment and prevention
of disease, Synthetic Biology holds great promise, but faces several challenges due to the
uncertainties and noise inherent in biological systems. In this paper we review recent progress in
the design and testing of biological control systems that aim to overcome these limitations. We
then use classical control theory to derive a number of design constraints for implementation
of linear control systems that achieve adaptation and disturbance rejection. Finally, we design
a linear system for rejection of ramp-type disturbances, and from this demonstrate how the
derived linear system constraints can be embedded in a more realistic non-linear biological
context.
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1. INTRODUCTION

Synthetic Biology is an emerging field concerned with the
rational design and engineering of biological systems. It
has risen sharply in prominence following landmark results
of the early 21st century, such as the demonstration of a
Toggle Switch (Collins et al. (2000)), and the Repressila-
tor (Elowitz and Leibler (2000)). Whilst these advances
demonstrated an ability to re-wire natural genetic com-
ponents to achieve user-defined goals, attaining reliabil-
ity and consistency of performance remains challenging
(Nielsen et al. (2013)). Difficulties arise for reasons includ-
ing the random fluctuations and noise inherent in cellular
processes (Balazsi et al. (2011)), as well as unforeseen de-
pendencies and interactions between synthetic constructs
and native cellular machinery (Del Vecchio (2015)). Study
of wild-type cell behaviours has demonstrated that many
such challenges are overcome in nature by systems that
have evolved feedback architectures similar to those com-
monly used in control engineering (Yi et al. (2000)). In re-
cent years this has inspired researchers to begin designing
and implementing analogous synthetic biological control
systems (Del Vecchio et al. (2016)).

The bacterial chemotaxis system provides a model exam-
ple of a natural control system, and as such has attracted
extensive study. In the presence of extracellular stimulus it
can robustly (that is, with minimal sensitivity to proper-
ties of its constituent components, see Alon et al. (1999))
return its state to pre-stimulus levels, a process commonly
known as adaptation. It has been demonstrated that the
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underlying structure of this bacterial control system con-
tains integral feedback control (Yi et al. (2000)), which has
led to the propositioning of a range of synthetic signalling
pathways to achieve similar goals (Iglesias and Levchenko
(2001); Ma et al. (2009)). Networks with capabilities such
as this are of increasing interest to synthetic biologists
as they aim to realise systems in varying and non-ideal
conditions (Briat et al. (2016a)) found when attempting
to move synthetic constructs out of the laboratory.

In addition to adaptation, biological networks with many
favourable properties can be constructed via the inclusion
of feedback loops. For example, feedback can be exploited
to implement high dynamic-range gene circuits for compu-
tation (Daniel et al. (2013)). In the simple form of negative
auto-regulation, it can improve the response time of gene
networks (Rosenfeld et al. (2002)), and reduce hetero-
geneity of gene expression between cells (Nevozhay et al.
(2009)). Moving beyond biological feedback, in silico feed-
back systems which measure cell behaviour, calculate ap-
propriate control signals, and manipulate cells in response
have been demonstrated (Milias-Argeitis et al. (2011);
Menolascina et al. (2014)). As desired control architectures
become more complex it will be increasingly necessary
to develop modular biological constructs that approxi-
mate the fundamental components of traditional control
systems, such as integration, gain, and summation gates
(Oishi and Klavins (2011); Daniel et al. (2013)). This will
facilitate implementation of standard control structures
such as Lead-Lag (Harris et al. (2015)) and Proportional-
Integral-Derivative (PID) variant (Briat et al. (2016b))
controllers, whose favourable properties have led to their
ubiquity across engineering disciplines (Nise (2010)).



Though the widespread need for synthetic biological con-
trol systems has been recognised (Del Vecchio et al.
(2016)), and many architectures have been proposed, their
implementation remains difficult (Dolan et al. (2012)).
This stems from a lack of systematic approaches to design,
as well as methods for optimal (or even feasible) implemen-
tation (Harris et al. (2015)). Fundamental challenges arise
due to uncertainties in the properties of the constituent
components of biological circuits, which are exacerbated
by the inherent noise of cellular processes. Early attempts
to tackle the challenge of creating such circuits focused on
the standardisation of synthetic biological “parts” to allow
ease (and ideally, predictability) of assembly. However,
as parts libraries have grown it has become clear that
the context-dependent non-ideal behaviour of almost all
components means that larger constructs require substan-
tial experimental fine-tuning, even after extensive in silico
testing and development (Nielsen et al. (2013)). An obvi-
ous work-around for this technical challenge is to design
synthetic systems that build upon (and potentially re-
wire) native cellular processes (Nandagopal and Elowitz
(2011)) thus reducing the required network size to achieve
a given functionality. Since this approach requires fewer
synthetic components, it provides additional benefit by
minimising the metabolic load the synthetic control system
places upon its host cell (Briat et al. (2016b)).

Once a system has been designed and modelled, the next
challenge facing scientists is the selection and tuning of
biological parts for its implementation. This decision space
is growing in complexity as new research reveals natural
cellular regulation mechanisms, which are re-engineered
for use in synthetic constructs. Biological systems can now
be created over a range of molecular biological levels (for
example, using DNA (Sawlekar et al. (2016)), RNA (Chap-
pell et al. (2015)) or Protein (Nevozhay et al. (2009))),
as well as at widely varying time-scales (Prescott and
Papachristodoulou (2015); Rivera-Ortiz and Del Vecchio
(2015)) and species concentrations (Briat et al. (2016b)).
However, working with this diversity of components re-
quires extensive expertise across a range of biological dis-
ciplines, and even after components are selected extensive
experimental fine-tuning is often required to achieve ac-
ceptable performance. Previous work (for example, Nielsen
et al. (2016)) has automated the component-selection and
tuning process for some classes of synthetic constructs,
making such systems more accessible to users with a lim-
ited knowledge of the underlying biology. However, these
tools only treat systems with a restricted set of capabil-
ities, and may provide a sub-optimal implementation in
many situations since the automated design process does
not fully account for the up- and down-stream systems
with which it has to interface (Del Vecchio (2015)).

To address some of these challenges in implementation,
in this paper we outline fundamental structural require-
ments for networks that solve two common control goals:
adaptation and disturbance rejection. We provide general
guidelines that can be used to simplify the creation of
systems with these desirable capabilities. This is done
by first designing a linearised control system via appli-
cation of reasonable assumptions to aid implementation,
and then deriving constraints on the network structure
and parameters. Some of these results follow from the

Internal Model Principle (Francis and Wonham (1976)),
but are particulated for the biological systems in question.
Once an appropriate linear system has been designed, we
demonstrate methods for its embedding in a non-linear
model of biological relevance. The final challenge, that
of selecting particular biological components with appro-
priate behaviour and parameter values, is not addressed
herein.

In Section 2 methods for modelling of biological systems
are discussed, and the general approach to linearisation of
a non-linear system is described. In Section 3 results are
derived that govern the equilibrium behaviour of linear
systems, which are then used in Sections 4 and 5 to derive
minimal requirements for networks capable of adaptation
and rejection of disturbance respectively. In Section 6 the
results of Section 5 are used to create a network able to
reject ramp-type disturbances. This network is used to
design a non-linear system with these capabilities, which is
simulated using illustrative parameters. Section 7 discusses
assumptions made in this work and concludes the paper.

2. MODELLING BIOLOGICAL CONTROL SYSTEMS

Approaches to the modelling of biological systems range
from stochastic/probabilistic analyses to deterministic dif-
ferential equation (DE) models (Ingalls (2014)). Here we
focus on a subset of the later, utilising both linear and
non-linear first-order differential equations to describe the
dynamics of individual state variables, each of which may
represent individual species, or larger scale properties, of
biological systems. Each first order equation will be a
(potentially non-linear) function of the system’s state vari-
ables and any external inputs/disturbances to the system.

A general first-order non-linear system that describes the
dynamics of n state variables x(t) = [x1(t), . . . , xn(t)] ∈
Rn can be expressed in the form

ẋ(t) = f(x(t),u(t)) (1)

in which ẋ(t) = dx(t)
dt ∈ Rn is a vector containing the time

derivative of each state variable, u(t) ∈ Rn is a vector
of time-dependent inputs to the non-linear system’s state
variables, and f(x(t),u(t)) ∈ Rn contains n non-linear
functions of the state variables and inputs.

To simplify analysis it can be advantageous to examine
non-linear systems in a regime in which they can be
approximated by a linear system. The system in (1) can
be linearised via Taylor series expansion of f(x,u) about
one of its equilibrium points xe ∈ Rn (so, f(xe,0) = 0), to
give (disregarding higher order terms)

˙̃x ≈ ∂f

∂x

∣∣∣∣
xe,0

x̃ +
∂f

∂u

∣∣∣∣
xe,0

u (2)

where ∂f
∂x

∣∣
xe,0

∈ Rn×n is the Jacobian of f evaluated

at (xe,0), ∂f
∂u

∣∣
xe,0

∈ Rn×n is a matrix of all partial

derivatives of f with respect to elements of u evaluated
at (xe,0), and x̃ = (x−xe) is the deviation in x from xe.

In this work we consider the above linearisation process in
the opposite direction: We first derive the necessary form
of ∂f

∂x

∣∣
xe,0

, and then attempt to find a non-linear biological

system as in (1) possessing these linear dynamics about
one of its equilibrium points. For a given linear system



there will be many feasible forms of f(x,u) depending on
the physical components chosen, and so this choice will be
narrowed down by selection of implementations that are
most biologically tractable.

3. GENERAL LINEARISED NETWORK
STRUCTURE

We can express a general linear system in the form

ẋ = Ax + Bu
y = Cx + Du

(3)

where x(t) ∈ Rn represents the system’s state variables
and ẋ(t) their time derivatives (as in Section 2), u(t) ∈ Rm

is the system’s input and y(t) ∈ Rp the system output.
For SISO (single input single output) systems as consid-
ered in Sections 3, 4 and 5 of this paper, m = p = 1
(for an example with greater input/output dimension see
(10)). A,B,C,D are constant matrices of appropriate
corresponding dimensions that define the system, with
individual elements in R. In this paper we will generally
take D = 0, meaning the output of the system is not a
direct function of the input.

Proposition 3.1. Consider a SISO system in the form of
(3) with n state variables, D = 0, and in which A has
all of its eigenvalues in the open left-half plane (and is
hence asymptotically stable). The following statements are
equivalent:

1. The system rejects inputs of the form u(t) = tk−1

with k ∈ N+, i.e. limt→∞ y(t) is independent of u(t).
2.

lim
s→0

det

[
sI−A B
C/sk−1 0

]
= 0 (4)

where s is the frequency domain (Laplace) parameter,
A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n, and I is the
n× n identity matrix.

Proof Presented in Steel and Papachristodoulou (2017),
omitted here for brevity. 2

In the following sections sub-matrix notation will be as
follows:

• Ai,j refers to the element in the ith row and jth
column of A
• Ai:j,k:l refers to a sub-matrix of A of size j−i by l−k,

which includes elements from the ith to jth row, and
kth to lth column of A.

4. GENERAL NETWORK FOR ADAPTATION

For a system to achieve adaptation the long-term be-
haviour of one of its state variables (the output) must
be independent of a time-dependent input applied to a
different state variable (the input). We will arbitrarily
define the input state variable as the first element in the
system, and the output state variable as the last, giving

B =

 1
0
...

 ,C = [ · · · 0 1 ] . (5)

Definition: Degree of Connectivity (Dg)
If the output of a network with B,C as in (5) is to

be influenced in some way by the input, there must
be a path of connection (in the graph theory sense)
between input/output state variables. The length of the
shortest such path will be referred to as the Degree of
Connectivity (Dg). This length will be defined by the
number of connections made between state variables, and
thus a path of length Dg will include Dg+1 state variables,
two of these being the input and output (1st and nth state
variables respectively). If the rows of A are arbitrarily
re-arranged such that the first 1, . . . , Dg state variables
sequentially form the shortest path to the output (nth)
state variable, then the requirement for connectivity is
equivalent to the following for Dg = 1, . . . , n− 1

An,Dg

Dg∏
j=2

Aj,j−1 6= 0, An,1:Dg−1 = 0 (6)

Thus if Dg = 1, the input state variable connects directly
to the output (An,1 6= 0), or if Dg = 2 the input state
variable connects to the second state (A2,1 6= 0) which
connects to the output (An,2 6= 0).

Proposition 4.1. Consider a linear system that satisfies
the assumptions of Proposition 3.1, with B,C as in (5).
Suppose that for this system we are unable to set any
element of A to be a function of other elements of A, and
that there exists a solution to (6) for some Dg, so that
the input and output of the network are connected. The
system with the minimal number of state variables (n)
that is able to reject an input of the form u(t) = tk−1 has
the following properties:

1. n = k + 2
2. Ai,i = 0, and the product Ai,1An,i = 0, for all
i = 2, . . . , n− 1

3. Ai,n 6= 0 for at least one i = 2, . . . , n, and A1,j 6= 0
for at least one j = 1, . . . , n− 1.

4. Dg = 1, and thus An,1 6= 0.

Proof Presented in Steel and Papachristodoulou (2017),
omitted here for brevity. 2

From a biological standpoint, the first constraint in
property 2 of Proposition 4.1 means that the degrada-
tion/dilution rate of each non-input/output species must
be small compared to the other dynamics of our synthetic
system. The second constraint dictates that a species i
(except for the input species) can not simultaneously be
influenced by the input node while directly influencing the
output node. This is equivalent to requiring that there are
no paths from input to output that go through precisely
one other node.

5. GENERAL NETWORK FOR DISTURBANCE
REJECTION

To formulate a network that can reject a disturbance in
one of its state variables we consider a system in which
the input and output are (arbitrarily) applied to the first
state variable, giving

B =

 1
0
...

 ,C = [ 1 0 · · · ] . (7)

In a biological sense, such a network would be able to
stabilise the concentration of an output species (whose



equilibrium concentration may be a function of inputs
elsewhere in the network) as it is being consumed by sec-
ondary processes. This system is therefore able to function
as a load-driver. Such systems have been implemented in
a Synthetic Biological context in recent years, and have
been shown to provide much-needed modularity for the
interfacing of biological systems (Mishra et al. (2014)).

Proposition 5.1. Consider a linear system that satisfies
the assumptions of Proposition 3.1, with B,C as in (7).
Suppose that for this system we are unable to set any
element of A to be a function of other elements of A. The
system with the minimal number of state variables (n)
that is able to reject an input of the form u(t) = tk−1 has
the following properties:

1. n = k + 1
2. A1,1 < 0, Ai,i = 0 for all i = 2, . . . , n, and Aj,iAi,j =

0 for all combinations of i, j = 2, . . . , n.
3. Ai,1 6= 0 and A1,i 6= 0 for at least one i = 2, . . . , n.

Proof Presented in Steel and Papachristodoulou (2017),
omitted here for brevity. 2

6. APPLICATION TO BIOLOGICAL SYSTEM
DESIGN

6.1 Implementation of parameter constraints

We now apply the above constraints to design a synthetic
biological system capable of rejecting a ramp (k = 2)
disturbance. To achieve a physically realisable system we
desire at least one negative element in each row of A, such
that an equilibrium can be achieved without necessitating
a negative constant input. For a minimal realisation of this
system, following Proposition 5.1 we require a network of
size n = 3, which in linearised form will be expressed as

A =

[
A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

]
(8)

Again from Proposition 5.1 we have A2,2 = A3,3 = 0 and
A2,3A3,2 = 0, for which we will arbitrarily set A2,3 = 0, as
this choice is symmetric under a change of species index.
To avoid degeneracy of A we then require A3,1 6= 0,
and to enforce stability the determinant is constrained
as A3,1A1,2A2,3 < 0 (since the determinant equals the
product of three eigenvalues with negative real parts)
which can be enforced by setting A3,1 < 0. We are left
with A2,1 and A1,3 unconstrained, and so will set A2,1 < 0
such that there is a negative rate in the second row, and
A1,3 = 0 to simplify the system. Thus we are left with

A =

[−|A1,1| |A1,2| 0
−|A2,1| 0 |A2,3|
−|A3,1| 0 0

]
(9)

which forms part of a single-input multiple-output linear
system as in (3) given by

˙̃x = Ax̃ +

[
ux1

(t)
0
0

]
y = x̃

(10)

where as before x̃ = x − xe, and ux1(t) is the time-
dependent disturbance to species x1 which we hope to
reject. We now seek a non-linear system which can be
approximated near to an equilibrium by the constrained
linear system in (10).

6.2 Non-linear system selection and correspondance with
linear system

To design a non-linear system (in the form of (1)) that can
be approximated by (10) we begin by selecting biological
mechanisms to account for each of the elements of (9).
There are many ways in which this can be done depending
on the biological components selected, and we will describe
one such implementation.

The element −A1,1 can be easily implemented via a
fast degradation tag on x1, whilst elements A1,2 and
A2,3 can be provided by having species x2 and x3 non-
cooperatively activate the expression of species x1 and
x2 respectively, with both in the regime for which their
concentration is small compared to the activator binding
equilibrium constant. Elements −A2,1 and −A3,1 provide
the greatest difficulty in the implementing of this system
(as negative non-diagonal terms do in general), but can
be satisfied by requiring species x1 be able to prevent
species x2 and x3 from being able to function as activators.
Biologically, this could be achieved by choosing x1 to be an
enzyme operating in the saturation regime (where enzyme
concentration is small compared to that of the substrate)
that is able to degrade or otherwise inactivate x2 and x3.
As an alternative, an annihilation reaction between species
x1 and both x2 and x3 could be used which would provide
a constant term in the linearisation, provided the system’s
design goal of keeping x1 constant was achieved.

Using the standard Hill equation (for non-cooperative
activation) and Michaels-Menten equation (for enzyme
activity) (Murray and Del Vecchio (2010)) the system’s
non-linear dynamics can therefore be expressed as

f(x,u) =


αx1 − δ1[x1] +

βx2
[x2]/k1

1 + [x2]/k1
+ ux1

(t)

αx2 −
kcat1 [x1][x2]

KM1 + [x2]
+
βx3

[x3]/k2
1 + [x3]/k2

αx3
− kcat2 [x1][x3]

KM2
+ [x3]

 (11)

where we have placed the state variables in square brackets
to indicate that they represent concentrations. The αxi

represent basal expression rates of each species, and βxi

the maximal rate increase due to activation. We want
activators x2 and x3 to operate in the regime where their
concentration is small compared to their binding equilib-
rium constants (k1 � [x2] and k2 � [x3] respectively),
whilst the enzyme x1 should operate in the saturation
regime (so KM1 � [x2] and KM2 � [x3]). This allows
the non-linear dynamics to be simplified to

f(x,u) ≈

[
αx1
− δ1[x1] + βx2

[x2]/k1 + ux1
(t)

αx2
− kcat1 [x1] + βx3

[x3]/k2
αx3
− kcat2 [x1]

]
(12)

From this the Jacobian can be calculated as

∂f

∂x

∣∣∣∣
xe,0

=

[ −δ1 βx2/k1 0
−kcat1 0 βx3/k2
−kcat2 0 0

]
(13)

We are now able to use (2) to construct a system in the
form of (10) by setting

∂f

∂u

∣∣∣∣
xe,0

=

[
1 0 0
0 0 0
0 0 0

]
,
∂f

∂x

∣∣∣∣
xe,0

= A, − ∂f
∂x

∣∣∣∣
xe,0

xe =

[
αx1

αx2

αx2

]
(14)



x1

x2 x3

kcat2kcat1

δ1

βx2/k1

βx3/k2

αx1

ux1 (t)

αx2 αx3

Fig. 1. Network diagram for linear system in (10) with
parameter values from the non-linear approximation
in (13). Pointed (blunt) arrows indicate a positive
(negative) affect of one species’ concentration on that
of another.

6.3 Parameter selection and implementation

With the equivalences in (14) set, the non-linear system
described by (11) is approximated by a linear system
as in Figure 1. To model this system, values for the
parameters and ratios in (13) (which then define the
elements of the linear system (9)) are selected in order
to ease implementation, subject to two constraints. First,
that the eigenvalues of this matrix all lie in the open left
half plane as per Proposition 5.1. Second, that there exists
an equilibrium solution to f(xe,0) = 0 with f as in (12),
with all elements of xe and each αxi

term strictly positive.

Table 1. Sample model parameters (unitless)

Parameter Value Parameter Value Parameter Value

[xe1] 1.5 αx1 0.5 kcat1 1.5
[xe2] 2.5 αx2 1.0 kcat2 1.0
[xe3] 2.5 αx3 1.5 k1 80
βx2 80 KM1

0.01 k2 80
βx3 40 KM2 0.01 δ1 2.0

Based on the equilibrium concentrations [xe] the activa-
tion binding constants are selected to satisfy k1 � [xe2]
and k2 � [xe3], and the Michaelis-Menten constants to
satisfy KM1 � [xe2] and KM2 � [xe3]. Values for βx2 and
βx3 are then fully defined by the ratios in (13). This process
was followed to yield an illustrative set of satisfactory
parameters, summarised in Table 1.

Using these values we simulated the linear (10) and non-
linear (11) systems using MATLAB, for which results are
presented in Figure 2. With all state variable concentra-
tions [x] initially zero, designed equilibrium values (Table
1) are quickly reached. The time-dependent input ux1

(t)
applies a negative unit step input at t = 20, and from
t = 50 a linearly decreasing ramp. Though [x1] departs
from equilibrium at each discontinuity of ux1

(t), it quickly
returns to the desired value [xe1], achieving the system’s
design purpose. Agreement between the linear and non-
linear systems is good, particularly in terms of the con-
trolled variable x1, which was found to be robust to varia-
tion of model parameters, though these variations can shift
the system’s equilibrium position. Substantial (e.g. order
of magnitude) changes in k1, k2,KM1 ,KM2 can reduce
the applicability of assumptions made when linearising
our non-linear implementation. This results in departure
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-ux1(t)

xe1

x1 Linear model

x1 Non-linear model

x2 Linear model

x2 Non-linear model

x3 Linear model

x3 Non-linear model

Fig. 2. Comparison of linear (10) and non-linear (11)
realisations of a system designed to reject step and
ramp disturbances to x1. Close agreement is found
between the value of x1 in both models and its desired
equilibrium value xe1. Model parameters used are as
in Table 1. The negative of the time-dependent input
ux1(t) is plot as a rate, and state variables (x) are plot
as concentrations. All values in arbitrary units (a.u.).

between the linear and non-linear models, particularly in
x2 and x3, with the controlled variable x1 affected to a
lesser extent. However, since the assumptions made in the
derivation of (12) still loosely hold, the structure of the
system is maintained and so rejection of disturbance is
still achieved.

7. CONCLUSIONS

The constraints derived in this paper provide a general
guideline for designing systems capable of adaptation and
disturbance rejection, but do so under a limited set of
assumptions which may, in practice, be violated. For ex-
ample, the requirement that elements of A be independent
of one-another can be violated by transformation reactions
between state variables such as

x1
k1−⇀↽−
k2

x2 (15)

which results in a matrix of the form

A =

[
−k1 k2
k1 −k2

]
(16)

However, in many cases such reactions can prove challeng-
ing to implement within the context of a larger system. For
example, it may be difficult to find a biological component
with this property that is also able to activate/repress
other species in the system. Investigating the properties



of systems in which these assumptions are relaxed will be
the topic of future work, and will hopefully lead to the
experimental realisation of the synthetic biological circuits
described in this work.

Whilst this paper has not addressed the challenge of choos-
ing specific components for synthetic biological control
systems, the methods described herein provide a starting
framework to simplify this design task. An engineer using
these results can avoid simulating and testing a variety of
network topologies, instead starting with a valid network
structure to which biological components can be fit. As
discussed in Section 1 this can be done using an ever-
growing tool-kit of biological components, which will aid in
the realisation of the complex control structures required
for regulation of synthetic biological systems.
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